COVID-19 e vaccini: un po’ di domande “impertinenti” all’immunologo De Berardinis (CNR)

Quando si parla della pandemia o dei vaccini anti-COVID, le questioni “spinose” che si vorrebbe discutere in modo aperto con uno specialista sono davvero numerose. Grazie alla sua grande disponibilità – ed avendo nel frattempo messo da parte diverse domande – ho potuto farlo con uno dei maggiori esperti italiani del settore, che ringrazio: Piergiuseppe De Berardinis, direttore del Laboratorio di immunologia presso l’Istituto di Biochimica e Biologia Cellulare del CNR, che in questi anni si è occupato di studiare la risposta immunitaria e la problematica dei vaccini sia dal punto di vista sperimentale che divulgativo.

D.: Dottor De Berardinis, come in una sorta di “partita a scacchi con il virus”, non poteva certamente mancare, dopo la variante Inglese, una variante Indiana, che analogamente a quella Sudafricana presenta due diverse mutazioni. Ciò mi ricorda un po’ il film Wargames, dove il computer tenta di indovinare, un carattere dopo l’altro, il codice di lancio dei missili balistici, ed è solo questione di tempo perché vi riesca. Nel caso del SARS-CoV-2, però, ciò potrebbe significare rendere d’un colpo inutili i vaccini attuali, che non sono “universali”, bensì rivolti tutti verso la famosa proteina Spike. Come vede, da immunologo, questo rischio, cogliendone certamente meglio di un “non addetto ai lavori” gli aspetti sia qualitativi sia quantitativi?

Il Dr. Piergiuseppe De Berardinis insieme ad alcune ricercatrici del Gruppo che coordina presso il CNR.

R.: C’è un gioco molto popolare in Giappone che si chiama “Acchiappa la talpa” e consiste nel cercare di colpire con un martello le talpe che appaiono in modo casuale nel tabellone. È reale il timore che per contrastare la lotta alle varianti la comunità scientifica dovrà partecipare a questo gioco. C’è da dire che i dati finora ottenuti indicano che i vaccini che si stanno somministrando hanno la capacità di indurre anticorpi protettivi nei confronti delle varianti come quella inglese nella totalità dei casi, ma anche nei confronti delle varianti brasiliana e sudafricana. Ci auguriamo, pertanto, che sia così anche per la variante “indiana” che ricordiamo presenta (anche se in unico ceppo) due mutazioni già presenti  in  altre varianti. In ogni caso l’insorgenza delle varianti ci fa capire quanto sia urgente e di fondamentale importanza assicurare una vaccinazione globale nei tempi più brevi possibili allo scopo di limitare la circolazione virale.

Inoltre, come già anticipato nella domanda, un obiettivo primario per la comunità scientifica resta la realizzazione di un vaccino in grado di proteggere contro diversi coronavirus e, in prospettiva, anche nei confronti di quelli che potranno emergere nei prossimi anni. Un tale vaccino, a detta di chi lavora sul campo, sembrerebbe alla portata  nei prossimi anni per proteggere contro l’infezione,  se non  di tutti i coronavirus,  perlomeno  contro quelli del sottogruppo “sarbecovirus” a cui appartengono i virus SARS-CoV-2 e SARS-CoV. Infatti, a dispetto di molti aspetti ancora ignoti, il rapido successo dei vaccini anti SARS-CoV-2 ha sparso ottimismo. Il coronavirus non sembra difficile da combattere con un vaccino, a differenza di altri patogeni come il virus  HIV-1 o lo stesso virus dell’influenza.

Il razionale per tali vaccini pan-coronavirus si basa principalmente sulla presenza di sequenze conservate nei differenti virus (come sequenze di RNA in virus isolati dal pangolino e da diversi pipistrelli, o domini conservati nella proteina “spike” di molti coronavirus che infettano l’uomo). In questo ambito, diversi gruppi di ricerca stanno già lavorando in varie parti del mondo alla formulazione di vaccini basati su:  “mosaic vaccines”, proteine spike chimeriche, costruzione di nanoparticelle che assemblano RNA di diversi betacoronavirus e cocktails di virus inattivati.

C’è infine da dire che, su questa tematica, l’opinione della comunità scientifica è quasi radicalmente mutata in questi ultimi mesi. Nel 2017 l’agenzia statunitense che sovraintende e finanzia le ricerche sui vaccini – il “National Institute of Allergy and Infectious Diseases” (NIAID) diretto da  Anthony Fauci – giudicò di bassa priorità la richiesta di un finanziamento per un vaccino pan-Beta coronavirus (a quel tempo si parlava principalmente dei virus SARS-CoV e MERS). Ma, nel novembre 2020, l’Agenzia ha modificato il suo giudizio, sollecitando l’accettazione di finanziamenti per ricerche in condizioni di Emergenza. Inoltre, a marzo 2021 un’altra organizzazione sovranazionale, denominata CEPI (Coalition for Epidemic Prepardness Innovations) ha annunciato di finanziare con 200 milioni di dollari un nuovo programma per vaccini anti pan-betacoronovirus. È, d’altronde, opinione di molti esperti che nei prossimi 10-50 anni potremo verosimilmente assistere all’insorgere di nuove infezioni pandemiche causate da coronavirus.

D.: Il vaccino Astrazeneca – e pare non solo quello – ormai sappiamo in modo statisticamente abbastanza affidabile che produce dei trombi, almeno in alcune persone. Come è possibile che nessun soggetto terzo e indipendente rispetto ai produttori – come ad esempio il CNR – non abbia iniziato a esaminare, in un piccolo campione di vaccinandi, i livelli ematici, pre- e post-dose somministrata degli indicatori del livello di coagulazione del sangue e magari di altri parametri, al fine di capire se si tratti di un fenomeno comune (al di là dei casi in cui si manifesta in modo rilevante, che potrebbero rappresentare solo la punta dell’iceberg)? Cosa ne pensa? E lo suggerirebbe alle Autorità Sanitarie, visto che l’AIFA non lo fa?

R.: Sulle problematiche relative al vaccino Astrazeneca le autorità decisionali dei vari paesi hanno assunto una posizione non ben definita e basata più che altro sulla cautela e sull’attesa. Analogamente, il Comitato Tecnico-Scientifico del nostro paese non ha assunto, perlomeno inizialmente, una chiara linea di condotta e di conseguenza l’Autorità politica ha proceduto un po’ alla cieca. Oramai, nella terminologia scientifica relativa al COVID-19 è entrato l’acronimo VITT (Vaccine-induced Immune Thrombotic Thrombocytopenia). Si è chiaramente dimostrata la presenza, nel siero dei pazienti colpiti da tromboembolia piastrinopenica, di anticorpi contro il fattore piastrinico 4 (pF4).

È stato inoltre dimostrato, in studi in vitro su vaccini adenovirali, che l’aggiunta di pF4 e/o di anticorpi anti-pF4 aumenta la grandezza delle particelle di vaccino e che in questi aggregati le proteine pF4, le proteine capsidiche del vettore adenovirale e le piastrine sono strettamente connesse. Tuttavia, a tutt’oggi manca un evidenza diretta ex vivo o tramite studi di anatomia patologica del coinvolgimento diretto dei vettori adenovirali nella formazione dei trombi nei pazienti che hanno sofferto di questi gravi effetti indesiderati.

C’è infine da dire che anticorpi anti-pF4 sono presenti anche nel siero di individui a cui è stata somministrata la vaccinazione a mRNA. Tuttavia, nel vaccino Astrazeneca è stato rinvenuto anche l’eccipiente EDTA, che può  causare nello 0,1-2% dei campioni di sangue il “clumping” in vitro delle piastrine, un fenomeno noto come “EDTA dependent-Pseudothrombocytopenia” (EDTA-PCTP). C’è, pertanto, chi suggerisce di effettuare questa analisi ed escludere dalla vaccinazione con Astrazeneca chi risultasse positivo al test in vitro per EDTA-PCTP.

In sostanza, in un contesto ancora incerto, ci sarebbe bisogno di ricevere chiare linee guida sulla necessità e il tipo di esami di laboratorio da eseguire. Questo deve essere un compito dell’Autorità sanitaria di riferimento, a cui nessuno dovrebbe sostituirsi onde evitare ulteriore confusione e sconcerto nella popolazione. Con questo non voglio assolvere il CNR, la cui capacità di rispondere all’emergenza ponendo le proprie strutture al servizio del paese è stata nulla o debolissima, come ho avuto occasione di dire in altri contesti. Il CNR è stato praticamente senza una guida scientifica fino a qualche settimana fa, quando il ministro competente ha nominato il nuovo Presidente, sul cui operato tutti noi Ricercatori e Tecnologi nutriamo molte aspettative.

D.: In occasione dell’epidemia di SARS del 2002-03, in cui non fu possibile usare i vaccini per i problemi incontrati nel loro sviluppo e perché nel frattempo il problema era stato risolto usando contromisure “classiche”, se non sbaglio l’immunità naturale nei soggetti contagiati durò un tempo molto lungo: 2-4 anni. Dato che i vaccini attuali sembrano essere molto più potenti, in quanto a immunità indotta, rispetto a quella naturale – sia nei casi sintomatici sia, a maggior ragione, in quelli sintomatici o pauci-sintomatici – secondo lei è ragionevole supporre che, salvo sorprese relative a nuove varianti, almeno per chi si è vaccinato con i vaccini più protettivi possa non essere necessario un richiamo dopo un solo anno?  

R.: Qui entriamo nel campo delle ipotesi e le risposte certe solo il tempo sarà in grado di darle.

Il problema è ovviamente connesso alla persistenza endemica del virus nei prossimi mesi o, più pessimisticamente, a nuove ondate di infezione in una popolazione non coperta dalla vaccinazione e all’emergere di altre varianti. Per quanto riguarda la durata dell’immunità protettiva dobbiamo considerare  una possibile variabilità individuale e anche una variabilità indotta dai differenti tipi di vaccini somministrati, che al momento risultano tutti protettivi. Io non penso che si possa sostenere oggi con certezza la necessità di un secondo percorso di vaccinazione, ma è sempre meglio prepararsi a questa eventuale evenienza.

D.: Se si va a vedere nei rapporti dell’AIFA il tasso di effetti avversi segnalati per i vaccini anti-COVID in funzione dell’età dei vaccinati, si scopre che, diversamente da quanto l’uomo della strada potrebbe pensare, esso è maggiore nei giovani che non negli anziani. Suppongo che ciò avvenga perché l’effetto del vaccino si somma alla risposta immunitaria naturale, che è notoriamente massima nei giovani e decresce con l’età, fino a raggiungere il minimo negli anziani. Si tratta di una lettura corretta? E, in tal caso, non sarebbe opportuno dare ai giovanissimi una dose minore di vaccino (evidentemente per loro “sovradimensionato”), come si fa per alcuni farmaci, la cui dose consigliata è proporzionale al peso corporeo?  

R.: Penso che adottare una somministrazione personalizzata dipendente dall’età, dal peso corporeo come anche dalle condizioni di salute, di capacità di risposta immunitaria o metabolica di ciascuno di noi è qualcosa di futuribile, che rientra nel campo della medicina di precisione e della medicina personalizzata. Pensare di attuare simili pratiche in una campagna di vaccinazione di massa lo ritengo molto difficile. D’altronde stiamo parlando di effetti indesiderati di lieve entità.

D.: Il principale vaccino italiano in corso di sviluppo, ReiThera, essendo a vettore virale Come Astrazeneca, Johnson&Johnson e Sputnik, rischia di finire in un “cul de sac”, travolto dalla scelta europea di privilegiare i più tecnologici e moderni vaccini a mRNA messaggero. Sebbene questi ultimi abbiano il non trascurabile vantaggio di essere aggiornabili rapidamente in caso di nuove varianti del virus, non trova assurdo rinunciare a mesi di lavoro già fatto solo per l’errata comunicazione del rischio relativa ai vaccini a vettore virale? E cosa pensa dell’idea dell’UE di rinnovare gli accordi di fornitura fino al 2023 per vaccini a mRNA, quando invece dovremmo puntare a vaccini “universali” (che nel frattempo vi saranno)?  

R.: Indubbiamente i vaccini a mRNA sono quelli di più nuova concezione e, a oggi, quelli che hanno risposto meglio in termini di protezione e assenza di effetti indesiderati gravi. Resta il problema, per questi vaccini, della catena del freddo. In questo campo le ricerche stanno progredendo e la stessa Pfizer ha iniziato un trial clinico utilizzando un vaccino stabilizzato mediante liofilizzazione. Si tratta di un procedimento costoso, e al contempo altre strategie vengono perseguite, come l’alterazione delle particelle lipidiche che proteggono e custodiscono le molecole di RNA, in modo da rendere il preparato stabile a temperature meno stringenti. È ipotizzabile ritenere che, per le prossime pandemie, potremo anche avere  un vaccino a mRNA  che non necessiti della catena del freddo.

Non trovo pertanto sbagliato che  per il futuro si punti in modo particolare su questa piattaforma, anche per la formulazione di vaccini cosiddetti universali. D’altronde, da notizie apparse sulla stampa ho appreso che anche ReiThera, a cui è stato assegnato il compito di formulare e produrre un vaccino “italiano”, abbia dichiarato di volersi orientare verso questa nuova tecnologia. Per dirla tutta, personalmente non credo che sia facilmente attuabile una riconversione così immediata e non credo neanche che sia giusto dover investire in un vaccino cosiddetto italiano. Credo invece nella necessità di investire risorse pubbliche nella ricerca e produzione di vaccini, ma penso che ciò vada fatto in un contesto europeo in cui l’Italia con le sue strutture e le sue capacità professionali abbia un ruolo di protagonista.

Questa è una scelta che spetta alla politica congiuntamente ai vertici delle nostre Istituzioni di Ricerca e che spero venga fatta. D’altra parte, ritengo che questa sia un’esigenza condivisa anche da altri paesi europei.  Ad esempio la Francia si trova in  condizioni  simili alle nostre. Dopo l’annuncio, nei mesi scorsi, da parte del direttore scientifico dell’istituto Pasteur Christophe D’Enfert di aver abbandonato lo sviluppo di un vaccino anti-COVID-19, ve ne è stato uno, più recente, di voler di nuovo investire sullo sviluppo e sulla produzione di vaccini utilizzando le piattaforme più innovative.

Anche in Francia si lamenta che quest’“impasse” sia non solo la conseguenza di problemi strutturali dovuti al peso burocratico esercitato sulla ricerca biomedica pubblica e privata, ma anche della riduzione dei finanziamenti. Nel numero della rivista Science del 23 aprile è riportata una tabella indicativa della contrazione delle spese in campo Biomedico in Francia tra il 2011 e il 2018,  che risulta essere del 28%, a fronte di un incremento in altri paesi, come la Germania o il Regno Unito. È importante far presente che, dalla stessa tabella, si evince che la contrazione per l’Italia – che già partiva da un investimento minore – è stata, negli stessi anni, del 39%.

D.: Se si fa una ricerca su Google digitando le due semplici parole “COVID CNR”, si ottiene un risultato abbastanza sorprendente: nelle prime quattro pagine di news, al di là delle previsioni indipendenti del matematico Giovanni Sebastiani (IAC-CNR), di un articolo sul contact tracing pubblicato su Nature e di uno studio CNR-ISS-INMI sull’utilizzo di interferone beta per la cura domiciliare dei pazienti COVID-19, il suo Ente di ricerca pare molto assente, specie sul versante vaccini, nonostante il polo di 2 Istituti in cui lavora sia un fiore all’occhiello in questo campo. Perché il CNR non è più coinvolto, soprattutto nello sviluppo di un vaccino anti-COVID, cosi importante per l’indipendenza da Paesi terzi e aziende?     

R.: Non posso che essere d’accordo sull’analisi dello stato del CNR che c’è nella sua domanda. Posso anche assumere una quota di colpe – come ricercatore CNR – per l’ incapacità a eccellere in questo campo della ricerca. Tuttavia, ritengo che le responsabilità maggiori siano a carico di chi ha governato il CNR indirizzando e promuovendo la sua attività scientifica negli anni  passati e più o meno recenti, e che da ultimo non ha posto le condizioni affinché anche il CNR potesse dare un contributo alle più importanti ricerche sul COVID-19.

Per quanto riguarda i vaccini COVID, purtroppo Il CNR si è prestato al ruolo di “Bancomat” ministeriale, dirottando 3 milioni di euro ad un accordo con Regione Lazio e Istituto Spallanzani volto a finanziare il vaccino della ReiThera, senza nessun coinvolgimento dei propri ricercatori. Mi duole aggiungere che, all’inizio dell’emergenza COVID, il CNR ha allestito una cabina di regia costituita esclusivamente da dirigenti amministrativi, ad eccezione di un direttore d’istituto con specifiche competenze in virologia e non in rappresentanza della comunità scientifica. Ciò ha determinato un blocco della ricerca, relegando gran parte delle attività di Ricerca in “lavoro agile”.

D.: Secondo uno studio uscito a marzo, svolto dall’Ospedale Niguarda di Milano in collaborazione con l’Università di Milano, il 98,4% dei circa 2.500 sanitari vaccinati (tra gennaio e febbraio con due dosi) presso tale ospedale è risultato immunizzato contro il COVID-19, ma l’1,6% no. Si trattava, a quanto pare, di 4 persone immunodepresse, con trascorso di trapianti o patologie che implicano l’uso di farmaci che inibiscono la naturale risposta immunitaria, per cui hanno sviluppato un livello di anticorpi molto basso, nettamente inferiore rispetto al resto della popolazione. La domanda sorge quindi spontanea: come si devono proteggere soggetti simili, posto che l’immunità di gregge pare essere una chimera?

R.: Esistono, in questo caso, delle chiare linee guida reperibili nel portale del Ministero della Salute che riguardano in particolare le raccomandazioni per le persone immunodepresse. Anche riguardo all’accesso alle vaccinazioni le indicazioni del Ministero della Salute sono chiare. Infatti, secondo il piano strategico le persone con immunodeficienza o in trattamento con farmaci immunomodulatori devono essere vaccinati nelle prime fasi. Aggiungo che, a tutt’oggi, non è stata riportata nessuna infezione severa nei soggetti vaccinati e pertanto si spera che un minimo di protezione si instauri anche in individui immunodepressi. In linea generale, come sottinteso nella sua domanda, questa fascia della popolazione è quella che dovrebbe maggiormente beneficiare dell’“effetto gregge” determinato dalla vaccinazione di massa.

D.: Il professor Andrea Gambotto (Università di Pittsburgh, Pennsylvania), uno scienziato italiano trapiantato negli USA, dove è ricercatore di punta di un centro di eccellenza, è stato il primo studioso a individuare, nel 2003, la proteina “spike” come bersaglio dei vaccini anti-coronavirus. Il suo studio del 2003 pubblicato su Lancet è infatti stato il primo in letteratura sul tema, ma all’epoca nessuno finanziò i trial clinici sull’uomo, altrimenti avremmo avuto subito un vaccino efficace contro il SARS-CoV-2. In compenso, grazie all’attuale “corsa ai vaccini”, contro qualsiasi nuovo coronavirus che emergerà in futuro da un serbatoio animale, la prossima volta dovremmo essere assai più pronti. O non è detto?  

R.: Lo spero ardentemente e ricordo il noto aforisma dello studioso che ha rivoluzionato la Scienza (Louis Pasteur, ndr), aprendo la strada della vaccinologia: “La fortuna favorisce le menti preparate”.

D.: Secondo una dottoressa laureata in chimica e tecnologie farmaceutiche che ha lavorato per vent’anni nell’industria farmaceutica, i vaccini anti-COVID sintetizzati usando linee cellulari immortalizzate (ad es. Astrazeneca) sono potenzialmente pericolosi sul lungo termine poiché, se rimangono residui di lavorazione nel vaccino, potrebbero innescare cancerogenesi. In effetti, Astrazeneca usa la linea cellulare HEK-293. È già stata usata per produrre precedenti tipi di vaccini? Quali tecniche di purificazione, fra le varie possibili, sono state usate per Astrazeneca (io non le ho trovate)? Non crede che debbano essere condotte analisi da terze parti per verificare, magari a campione, la totale assenza di tali cellule nei vaccini prodotti? 

R.: Sono d’accordo sull’importanza di conoscere in dettaglio le composizioni dei preparati vaccinali e la necessità di analisi terze. In un articolo ancora in preprint ed a cui ho fatto riferimento in una precedente risposta parlando di VITT, Andrea Greinacher et al. hanno identificato, mediante spettrometria H-NMR, alcuni additivi presenti nel vaccino Astrazeneca, come ad esempio EDTA, saccarosio ed istidina. Nello stesso preprint è riportato come la preparazione del vaccino comporti un trattamento con nucleasi per ridurre la contaminazione del DNA delle cellule packaging HEK-293. Essendo, se pur remoto, ipoteticamente possibile il rischio di integrazione cromosomica del DNA dei vettori adenovirali, tale rischio potrebbe aumentare utilizzando DNA in cui ci fossero rotture della doppia elica. È tuttavia doveroso dire che tali integrazioni non sono mai state dimostrate negli studi preclinici e clinici finora effettuati.

D.: Il virologo e grande esperto di vaccini Geert Vanden Bossche (che ha lavorato per OMS, FDA, CDC, GAVI, Bill e Melinda Gates Foundation, etc.) è assai preoccupato: fare una vaccinazione di massa a pandemia in corso con vaccini “non sterilizzanti”, oltre a rischiare di creare una variante che “bypassi” i vaccini attuali, ha un’altra importante conseguenza: la soppressione temporanea del baluardo contro questo virus costituito dall’immunità naturale “innata”, cosa assai problematica (specie fra i più giovani), poiché renderebbe addirittura controproducente l’immunità artificiale indotta dagli attuali vaccini, che è solo “proteina spike-specifica”, il che rischierebbe di causare un’ecatombe. È d’accordo con la sua analisi?

R.: Sono in completo disaccordo con queste affermazioni. Basterebbe ricordare i 50 milioni di morti della pandemia “Spagnola” del 1918, che colpì un mondo meno interconnesso e meno densamente popolato di quello attuale. I dati che emergono da paesi come Israele, Regno Unito e Stati Uniti, in cui le vaccinazioni hanno coperto un maggior numero di persone, indicano una netta riduzione di mortalità. C’è oramai un generale consenso, da parte degli epidemiologi, sulla necessità di vaccinare prima la popolazione anziana ed a rischio di malattia grave. La risposta ai vaccini risulta essere policlonale e, sebbene limitata alla proteina spike, aumenta di fatto il repertorio della risposta anticorpale rispetto all’infezione naturale. Credo che si debba continuare con la vaccinazione di massa, estendendola a tutte le fasce di età ed a tutti i paesi del globo.




“Pillole” anti-COVID: quelle che non vi hanno mai dato

Una delle cose che mi hanno più colpito negativamente in questo anno di pandemia è stata la quasi più totale assenza – se si eccettua lo spot iniziale sull’igiene delle mani e quello sull’app Immuni – di campagne di informazione e prevenzione del Ministero della Salute attraverso il mezzo televisivo, e in particolare la mancanza di una comunicazione rivolta agli anziani, che, oltre a rappresentare la stragrande maggioranza delle vittime del COVID, sono persone che, in molti casi, si informano esclusivamente attraverso la televisione. Oltre a ciò, ho notato che vari temi rilevanti per la prevenzione del COVID non sono stati trattati tout court, neppure in trasmissioni giornalistiche e medico-scientifiche. In questo articolo affronterò, perciò, 10 fra le principali questioni che la gente a casa si è posta o trovata ad affrontare in questi mesi senza ricevere, a mio parere, delle risposte o delle indicazioni soddisfacenti.

In particolare, cercherò di fornire qui, nei limiti di una trattazione divulgativa ed al meglio delle conoscenze attuali disponibili, delle “pillole” di informazioni utili che purtroppo non sono mai state date da chi avrebbe dovuto farlo: (1) Quali sono i sintomi del COVID-19 e qual è l’evoluzione della malattia? (2) Come capire chi è davvero più a rischio di morte per il COVID-19? (3) Perché le cure domiciliari dei pazienti COVID sono fondamentali? (4) Perché il fattore tempo è così importante nella cura del COVID-19? (5) Quali integratori sono utili contro il COVID secondo la letteratura scientifica? (6) Perché la carica virale è importante nell’infezione da COVID-19? (7) Mascherine, sterilizzatori, pulsossimetri, etc.: cosa devo sapere? (8) Una domanda dei medici: come vanno trattati i pazienti a casa? (9) Come posso confrontare l’efficacia dei vari vaccini anti-COVID? (10) I vaccini anti-COVID sono sicuri o corro qualche pericolo?

1) Quali sono i sintomi del COVID-19 e qual è l’evoluzione della malattia?

Gli studi nella letteratura medica pubblicata in questo anno di pandemia riportano che i pazienti ammalati di COVID-19 possono presentare, come sintomi all’esordio: febbre, tosse secca, fame d’aria e affaticamento. Sono stati segnalati come possibili sintomi in pazienti infetti anche mal di gola, congestione nasale e naso che cola. Un numero significativo di pazienti (20%-60%) sembra avere una perdita dell’olfatto (nota anche come anosmia), che può essere il primo sintomo di presentazione [1].

Secondo quanto diffuso dai Centers for Diseases Control (CDC) di Atlanta, che negli Stati Uniti si occupano di epidemie e malattie emergenti, nei pazienti infetti sono stati segnalati anche brividi e tremore persistente, dolori muscolari, mal di testa, nonché cambiamenti nel senso del gusto. Un sintomo del contagio è talvolta la congiuntivite, per chi entra a contatto con il virus attraverso la mucosa degli occhi. Un altro disturbo che può emergere è la comparsa di vescicole sulla pelle, lesioni pruriginose e necrosi.

Nei casi più gravi, l’infezione può causare polmonite virale. Ed in circa il 90% delle diagnosi di ricovero ospedaliero di pazienti italiani morti per COVID-19 nel 2020 sono menzionate o condizioni (ad es. polmonite, insufficienza respiratoria) o sintomi (ad es. febbre, affanno, tosse) riconducibili, per l’appunto, al SARS-CoV-2 [2]. Nei ricoverati in Cina nel gennaio 2020 (relativi a 552 ospedali del Paese), la febbre era presente nel 44% dei pazienti all’ammissione, il secondo sintomo più comune era la tosse (68%), mentre nausea e vomito (5%) e diarrea (3,8%) erano poco comuni [3].

Il COVID-19 è una malattia caratterizzata da tre fasi [4], la prima delle quali è una fase virale che dura 7-10 giorni a partire dalla prima manifestazione dei sintomi. In approssimativamente il 20% dei casi è seguita da un secondo stadio – quello infiammatorio – annunciato da marcatori pro-infiammatori (ferritina, proteina C reattiva, etc.) e caratterizzato dall’apparizione di infiltrati nei polmoni, che sono seguiti in alcuni casi dal calo del livello di ossigeno nel sangue (ipossemia), rivelabile tramite un comune saturimetro.

Quest’ultima terza fase – che si verifica solo in un piccolo sottoinsieme dei pazienti iniziali (circa il 5%) – è caratterizzata da un’iperinfiammazione, che porta a una cosiddetta “tempesta citochinica” (una reazione immunitaria sistemica con cui il sistema immunitario combatte i microrganismi patogeni e induce le cellule a produrre altre citochine), che causa la “Sindrome di Distress Respiratorio Acuto” (ARDS), patologia potenzialmente fatale per la quale i polmoni non sono in grado di funzionare correttamente.

Le tre fasi della malattia COVID-19. Come vedremo, è molto importante agire già sulla prima fase, sia attraverso una prevenzione fai-da-te con opportuni integratori sia con il supporto di terapie domiciliari adeguate somministrate dai medici di base o dalle Unità Speciali di Continuità Assistenziale (USCA). Tutto ciò è ancora più determinante con la comparsa di varianti del SARS-CoV-2 più virulente.

Come spiega il prof. Giuseppe Remuzzi, direttore dell’Istituto Mario Negri, “la prima fase, quella asintomatica che dura da 3 a 5 giorni, è caratterizzata da un’alta carica virale, che aumenta ulteriormente con la comparsa dei sintomi. La malattia va quindi affrontata prima che scenda ai polmoni. Se si parte presto, di solito è possibile evitare il ricovero” [5]. È ovviamente fondamentale, allo scopo, avvertire ai primi sintomi il medico, cui spetta di indicare i farmaci da assumere e le dosi (alcuni possono avere effetti collaterali, specie se presi in concomitanza con altri).

Con la cosiddetta “variante inglese” (B.1.1.7), oggi predominante anche in Italia, la prima fase si è però ridotta a soli 2-3 giorni. Ciò suggerisce che il virus si replichi più velocemente dando meno tempo al nostro sistema immunitario per sviluppare gli anticorpi. Ma, soprattutto, secondo uno studio di Grind et al. [10], la variante inglese del SARS-CoV-2 risulta essere più letale rispetto alla variante originale, con un rischio di morte di ben il 67% maggiore, a conferma della maggior virulenza di questa variante. Come vedremo nella risposta all’ultima domanda, quest’ultimo è un effetto che potrebbe essere legato ai vaccini oggi usati.

2) Come capire chi è davvero più a rischio di morte per il COVID-19?

Sono ormai noti tre diversi fattori di rischio che caratterizzano un esito infausto nel COVID-19: (1) l’età, dato che ben l’85% delle vittime italiane hanno più di 70 anni (e circa il 95% delle vittime ha più di 60 anni); (2) la presenza di comorbidità (anche i pochi morti italiani sotto i 40 anni presentano, nella maggior parte dei casi, gravi patologie preesistenti: cardiovascolari, renali, psichiatriche, diabete, obesità [2]); (3) la carenza di vitamina D (nel sangue), come evidenziato da numerosi studi nel mondo [6, 7].

Si noti che, all’interno del 20% di pazienti la cui condizione, dopo la prima settimana di malattia COVID-19, può all’improvviso deteriorare si trovano anche persone che inizialmente avevano una sintomatologia lieve [4]. Di conseguenza risulta vantaggioso avere la capacità di distinguere – al di là della semplice valutazione dei fattori di rischio – i casi che avranno un andamento clinico non complicato da quelli che hanno maggiore probabilità di sviluppare distress respiratorio e che necessitano di terapie precoci.

Uno studio svolto da Cabanillas et al. [4] ha mostrato che, sebbene fra i malati di COVID-19 vi fossero differenze statisticamente significative fra i casi a basso rischio di morte e quelli a basso rischio, tuttavia non era possibile identificare uno o più fattori nella manifestazione clinica della malattia che potevano essere usati in modo affidabile per classificare i pazienti in gruppi a basso rischio o a ad alto rischio, in modo da riservare il ricovero ospedaliero soltanto a quelli del secondo gruppo e da curare a casa gli altri.

Infatti uno si aspetterebbe, intuitivamente, che la frequenza dei sintomi sia minore nei casi a basso rischio. Ma, contrariamente alle aspettative degli autori dello studio, la maggior parte dei casi seguiti – e rivelatisi a posteriori a basso rischio – presentavano, al momento della diagnosi, due o tre sintomi, il che indica come non potessero essere identificati come tali sulla base della sola sintomatologia.

Tuttavia, gli stessi autori hanno suggerito dei criteri nuovi sulla base dei quali i casi a basso rischio possono essere identificati e monitorati a casa, anche senza trattamento farmacologico (l’integrazione di vitamina D3 è comunque consigliabile anche in questi casi, dato l’elevato profilo di sicurezza nelle dosi consigliate dagli esperti a scopo preventivo: 4.000 UI al giorno, in particolare per anziani e persone “fragili” [8]), piuttosto che ricorrere all’ospedalizzazione o alla cura ambulatoriale del paziente COVID.

Il loro approccio è basato su una serie di parametri misurabili (Interleuchina-6, ferritina, D-dimero, proteina C reattiva, colesterolo HDL, linfopenia, saturazione dell’ossigeno) comprendenti essenzialmente marcatori infiammatori basati sul sangue. Questo metodo ha mostrato un’eccellente correlazione con l’esito clinico e costituisce un miglioramento rispetto al metodo del “Punteggio CALL” (che considera l’età, la presenza di comorbidità, il livello HDL e la linfopenia per assegnare un punteggio prognostico).

Infine, molte fonti di informazioni suggeriscono che in una grossa percentuale di casi la trasmissione virale avvenga in casa. Quando possibile, e in assenza di COVID hotel, gli altri contatti stretti sani dovrebbero lasciare il domicilio o quanto meno rimanere isolati in modo assai stretto. Ciò riduce la re-inoculazione del virus attraverso l’inspirazione di bioaerosol virale [9] in caso di successiva (o precedente) infezione di altri conviventi, cosa che può potenzialmente aumentare la gravità della malattia. Dunque, le persone che vivono in famiglia possono essere più a rischio rispetto a quelle che vivono da sole.

3) Perché le cure domiciliari dei pazienti COVID sono fondamentali?

Nella pandemia da COVID-19, in Italia a livello sanitario ci si è concentrati principalmente su due tipi di risposta: (1) il contenimento della diffusione dell’infezione e (2) la riduzione della mortalità dei pazienti ricoverati. Sebbene questi sforzi fossero ben giustificati, nella prima fase si sono trascurati del tutto i pazienti rimasti a casa [6], cui veniva negato l’accesso alle cure ambulatoriali del proprio medico curante. In seguito le cose non sono migliorate molto, poiché in quasi tutte le regioni le unità USCA nate allo scopo sono poche ed i loro medici sono spesso giovani con poca esperienza e iniziativa.

D’altra parte, l’attento studio dell’epidemiologia dei ricoverati suggerisce fortemente che si dovrebbe, al contrario, puntare moltissimo proprio sulle cure a domicilio dei pazienti COVID. Infatti, la maggior parte dei pazienti che arrivano ai Pronto soccorso degli ospedali con sintomi di COVID-19 non necessitano, inizialmente, di cure mediche avanzate: solo il 25% ha bisogno di ventilazione meccanica, supporto circolatorio avanzato o di terapia sostitutiva renale (per il filtraggio del sangue dei reni) [9].

Quindi, è ragionevole pensare che una buona parte – se non la maggior parte – dei ricoveri potrebbero essere tranquillamente evitati con una cura a casa dei pazienti come primo approccio, cosa che richiede il solo potenziamento dell’accesso ai farmaci ed all’ossigeno, nonché a un fondamentale dispositivo low-cost di monitoraggio come il pulsossimetro. Quest’ultimo, peraltro, potrebbe venire anche acquistato del tutto autonomamente dal paziente, se questi solo venisse meglio informato, anche con degli spot, della sua utilità, soprattutto nel rilevare forme silenti di scarsa ossigenazione del sangue (ipossemia) [11].

In altri Paesi, e anche in Italia, le cure domiciliari – per quei pochi medici che le hanno praticate e in più usando un protocollo di cura autogestito in deroga a quello stabilito dall’AIFA – hanno contribuito a trattare in sicurezza i pazienti con diversi gradi di complessità raggiungendo bassissimi tassi di ospedalizzazione e di mortalità se confrontati con quelli delle case di cura [12] oppure con quelli dei pazienti “trattati” con il protocollo dell’AIFA del 9/12/20, basato essenzialmente su un antipiretico, la tachipirina (dal prof. Remuzzi ritenuta inutile e controproducente) e sulla “vigile attesa” (come dire: aspetta e spera…).

Dunque le cure domiciliari, se fatte con protocolli opportuni, non solo (1) riducono gli accessi agli ospedali dei malati di COVID, ma anche – a cascata – (2) i ricoveri in terapia intensiva e (3) i morti, che sono i tre numeri che l’Italia non è riuscita a controllare, al punto da dover ricorrere a lockdown prolungati. Se ciò poteva forse essere tollerabile nella prima fase primaverile del 2020, quando si era del tutto impreparati, ciò non avrebbe dovuto ripetersi nell’autunno, quando c’erano tutto il tempo e il know-how necessari per spostare gran parte delle cure dalla fase tardiva ospedaliera a quella precoce domiciliare.

In Italia, alcuni medici di base di tutte le regioni si sono riuniti in un gruppo, il “Comitato per le Cure Domiciliari COVID-19”, che ha messo a punto e testato sui propri pazienti un protocollo di cura. È grazie a loro e all’efficacia dimostrata sul campo dal loro protocollo che l’Italia ha avuto un po’ meno morti di quelli che avrebbe potuto avere, dato che solo una percentuale del tutto irrisoria dei loro pazienti ha richiesto in seguito il ricovero. Tuttavia si è trattato di una goccia del mare, poiché tutti gli altri medici di base e quelli delle USCA si sono invece attenuti al protocollo ufficiale, quello dell’“aspetta e spera” [13].

Il Comitato in questione – che comprende anche uno stimato medico ospedaliero, l’oncologo Luigi Cavanna – è nato inizialmente sui social, dove è seguito da oltre 100.000 persone, e poi si è tramutato in un’associazione, la quale da tempo chiede che il proprio protocollo di cura basato sull’uso precoce di certi farmaci (quali idrossiclorochina, azitromicina, eparina, etc. e anche vitamina D) venga riconosciuto ufficialmente a seguito dell’efficacia mostrata dai numeri. Esso è in contatto con medici all’estero (Brasile, Stati Uniti, etc.) che hanno sperimentato con analogo successo protocolli molto simili.

4) Perché il fattore tempo è così importante nella cura del COVID-19?

Sebbene ora siano disponibili opzioni di cura per i pazienti con malattia COVID grave che richiedono il ricovero in ospedale, è urgentemente necessaria l’adozione di interventi che possano essere somministrati precocemente a casa durante il corso dell’infezione per prevenire la progressione della malattia e le complicanze a lungo termine [14]. I trattamenti precoci per il COVID-19, tanto più se associati a un vaccino efficace, avrebbero implicazioni rilevanti per la capacità di porre fine a questa pandemia.

Il vantaggio di curare precocemente le infezioni da agenti patogeni (e ridurre così la probabilità di ricoveri e di esiti infausti) è noto da oltre un secolo, ma per ridurre i costi e gli effetti collaterali i farmaci sono tipicamente prescritti come trattamento terapeutico, il che significa solo dopo che si sono manifestati i sintomi della malattia [15]. Inoltre, in Italia molte persone sono morte di COVID perché anche quei 2-3 giorni o più per aspettare l’esito del tampone prima di dare dei farmaci ha fatto spesso la differenza.

I medici di base del già citato “Comitato per le Cure Domiciliari COVID-19” hanno avuto successo non solo perché hanno usato un buon protocollo di cura, ma anche perché non hanno aspettato l’esito di tamponi, bensì hanno dato subito i farmaci (come del resto suggerito pubblicamente anche dal prof. Remuzzi). Chi disponeva di un ecografo portatile l’ha usato per diagnosticare la polmonite interstiziale, e l’acquisto di tale strumentazione – che è poco costosa – per medici di base e USCA sarebbe stato un investimento del Governo molto più saggio rispetto a quello per i banchi di scuola.

Lo studio sulla risposta immunitaria al COVID-19 suggerisce che un intervento precoce potrebbe aiutare a bilanciare la risposta immunitaria efficace contro l’azione dannosa causata dal SARS-CoV-2, in modo da costruire una risposta forte per combattere il virus. Poiché i pazienti con malattia moderata non hanno ancora sviluppato danni agli organi terminali, i dati suggeriscono che l’inizio del decorso della malattia è il momento migliore per intervenire con varie opzioni di trattamento per prevenire gli squilibri immunitari, proteici e metabolici osservati con la malattia più grave degli stadi successivi [16].

È proprio la fase iniziale  del COVID-19, quella in cui appaiono i primi sintomi, ad essere quella più ottimale per trattare la malattia, prima che la risposta infiammatoria passi da utile a dannosa in quanto assolutamente eccessiva. In parole povere, questi risultati suggeriscono che l’intervento con vari integratori antivirali e immunomodulanti nelle prime fasi del COVID-19 (ad es. vitamina D, lattoferrina, etc.) potrebbe limitare la disfunzione nella risposta del sistema immunitario alla lotta contro il virus [16].

La cosa non è difficile da capire. Nella prima fase della malattia, assistiamo a una sorta di gara fra, da una parte, la replicazione del virus che si moltiplica creando sempre più unità di se stesso e, dall’altra, il sistema immunitario che deve produrre velocemente sempre più anticorpi per neutralizzare le particelle del virus. Gli integratori a loro volta agiscono, da una parte, rallentando la replicazione del virus (azione antivirale) e, dall’altra, favorendo la produzione di anticorpi (azione immunomodulante). Dunque, facilitano di molto il rapido prevalere dei “difensori” (gli anticorpi) rispetto agli “attaccanti” (le particelle virali).

La “guerra” di un organismo contro il COVID-19 è, inizialmente, una battaglia fra la replicazione virale del SARS-CoV-2 e la produzione di anticorpi neutralizzanti queste particelle virali. Alcuni integratori (ad es. vitamina D, lattoferrina, etc.), grazie alla loro azione antivirale e immunomodulante, se presi quotidianamente come forma di prevenzione della progressione della malattia verso stadi più gravi, in caso di contagio rallentano la moltiplicazione delle particelle di virus e aiutano le difese immunitarie.

L’importanza del favorire i nostri “difensori” naturali, del resto, è palese anche con gli attuali vaccini anti-COVID, che stimolano l’organismo umano a produrre anticorpi (e una memoria immunitaria) contro la famosa proteina “spike” (una delle 26 proteine del SARS-CoV-2), che è l’uncino con cui si lega alle nostre cellule. Infatti, quando una persona viene infettata da questo virus, la risposta del sistema immunitario di un vaccinato è rapida e imponente proprio poiché “l’esercito” di anticorpi è già pronto e l’organismo non è preso alla sprovvista, come invece avviene a un non vaccinato (e non immunizzato).

5) Quali integratori sono utili contro il COVID secondo la letteratura?

La patogenesi del COVID-19 è altamente complessa e comporta la soppressione della risposta immunitaria innata e antivirale dell’ospite, l’induzione di stress ossidativo seguita da iperinfiammazione descritta come “tempesta di citochine”, che causa il danno polmonare acuto, fibrosi tissutale e polmonite [17]. Attualmente, ancora diversi farmaci sono in fase di valutazione per la loro efficacia, sicurezza e per la determinazione delle dosi per il COVID-19, ma ciò richiede molto tempo per la loro convalida.

Pertanto, esplorare la riproposizione di composti naturali contro il COVID-19 può fornire alternative sul breve termine, in quanto questi non presentano effetti collaterali e sono di basso costo e di facile reperibilità per il grande pubblico. Diversi nutraceutici hanno una comprovata capacità di potenziare il sistema immunitario e di agire come antivirali, antiossidanti e antinfiammatori. Questi includono la vitamina D, la vitamina C, la lattoferrina, lo zinco, la curcumina, i probiotici, la quercetina, etc.

Assumere alcuni di questi fitonutrienti sotto forma di integratore alimentare può dunque aiutare a rafforzare il sistema immunitario, rallentare la replicazione del virus, precludere la progressione della malattia allo stadio grave e sopprimere ulteriormente l’iperinfiammazione fornendo supporto sia profilattico che terapeutico contro il COVID-19, come sottolineato da uno studio [17] svolto da un gruppo di ricercatori indiani e pubblicato su una importante rivista di immunologia. Tra l’altro, potrebbe non essere un caso che l’India abbia avuto 10 volte meno morti COVID (per milione di abitanti) rispetto all’Italia.

La carenza di vitamina D è risultata essere, secondo svariati studi scientifici anche a livello di meta-analisi [5], un fattore di rischio indipendente per le forme gravi di COVID-19, per cui può essere usata sia in ambito preventivo (in dosi di 4.000 UI al giorno nella sua forma di vitamina D3), sia in ambito terapeutico (ad alte dosi). Pure la lattoferrina – una proteina che, come la vitamina D, ha proprietà antivirali, immunomodulanti e anti-infiammatorie – ha mostrato una notevole efficacia negli studi clinici [18, 19] nell’abbattere il rischio di forme gravi di COVID-19, e viene perciò assunta da tempo da moltissimi medici e farmacisti.

La vitamina C può potenzialmente proteggere dalle infezioni a causa del suo ruolo essenziale sulla salute immunitaria. Questa vitamina supporta la funzione di varie cellule immunitarie e migliora la loro capacità di proteggere dalle infezioni. È stato dimostrato che l’integrazione con Vitamina C riduce la durata e la gravità delle infezioni delle vie respiratorie superiori (la maggior parte delle quali si presume siano dovute a infezioni virali), compreso il comune raffreddore, che può essere prodotto da alcuni tipi di coronavirus con cui la nostra specie convive da tempo [20]. La dose raccomandata di Vitamina C varia da 1 a 3 g / giorno.

Lo zinco è un metallo essenziale coinvolto in una varietà di processi biologici grazie alla sua funzione di cofattore, molecola di segnalazione e elemento strutturale. Regola l’attività infiammatoria e ha funzioni antivirali e antiossidanti. Lo zinco è considerato il potenziale trattamento di supporto contro l’infezione da COVID-19 a causa dei suoi effetti antinfiammatori, antiossidanti e antivirali diretti. Quest’ultimo effetto è ottenuto riducendo l’attività dell’ACE-2, la proteina delle cellule a cui l’uncino (spike) del SARS-CoV-2 si lega per entrare nella cellula [17]. La dose raccomandata da vari studi varia da 20 a 92 mg / settimana.

La curcumina, che possiamo assumere aggiungendo un cucchiaino di curcuma al cibo, ha un ampio spettro di azioni biologiche, comprese attività antibatteriche, antivirali, antimicotiche, antiossidanti e antinfiammatorie [21]. Inoltre inibisce la produzione di citochine pro-infiammatorie nelle cellule, ed esercita un effetto antivirale su un’ampia gamma di virus, tra cui virus dell’influenza, adenovirus, epatite, virus del papilloma umano (HPV), virus dell’immunodeficienza umana (HIV), etc. [22]. Pertanto, la curcumina potrebbe essere un altro integratore interessante nella lotta alla patogenesi del COVID-19.

6) Perché la carica virale è importante nell’infezione da COVID-19?

Come per qualsiasi altro agente patogeno (batteri, funghi, etc.) o veleno, i virus sono di solito più pericolosi quando si presentano in quantità maggiori. Sola dosis venenum facit, ovvero “è la dose che fa il veleno”, dicevano i latini e il concetto si applica, mutatis mutandis, anche ai virus. “Piccole esposizioni iniziali tendono a portare a infezioni lievi o asintomatiche, mentre dosi più grandi possono risultare letali”, come ha spiegato molto bene il professore di chimica e genomica Joshua Rabinovitz.

Lo sappiamo bene nel caso dei batteri, in quanto è proprio la concentrazione di noti batteri indicatori di contaminazione fecale – l’Escherichia coli e gli enteroccchi intestinali – a definire se un’acqua costiera è balneabile o meno. Ad es., il valore limite dei primi è di 500 UFC (Unità Formanti Colonie) / 100 ml di acqua. Oltre questa soglia la balneazione è vietata, poiché alcuni ceppi di questi batteri possono causare nell’uomo infezioni a carico del tratto digerente, delle vie urinarie o di molte altre parti del corpo.

La cosiddetta “carica virale” è invece un’espressione numerica della quantità di virus in un dato volume di fluido corporeo (ad es. l’espettorato, il plasma sanguigno, etc.). Ogni virus ha la capacità di sopravvivere per un certo tempo nell’ambiente all’interno del fluido, ma è necessaria una carica virale minima per produrre l’infezione negli esseri umani: ad es. sono sufficienti circa 100 particelle virali nel caso del norovirus [23] – il virus a RNA responsabile della diarrea – e tale quantità minima è diversa da virus a virus.

Pertanto, per proteggersi dal COVID-19, occorre cercare di prevenire l’esposizione ad alte dosi di virus. In pratica, entrare in un palazzo di uffici in cui qualcuno è stato con il coronavirus non è così pericoloso come sedersi accanto a quella persona per un’ora in treno. Perciò, la durata breve dell’esposizione – così come il distanziamento sociale e una corretta igiene – aiutano a ridurre la dose di virus che possiamo inalare. Anche le mascherine FFP2 possono contribuire ad abbattere di molto la dose in questione.

L’esposizione ad alte dosi di SARS-CoV-2 è più probabile nelle interazioni ravvicinate fra le persone, come nel corso di riunioni o in bar affollati, o nel toccarsi il naso o la bocca dopo aver ricevuto quantità sostanziose di virus sulle mani. Le ricerche hanno mostrato che le interazioni interpersonali sono più pericolose in spazi chiusi e a breve distanza, con un’escalation nelle dosi che aumenta con il tempo di esposizione. Quest’ultimo rappresenta quindi una variabile molto interessante.

Più tempo si trascorre in un ambiente chiuso o semichiuso con aria infetta dal virus e maggiori sono le probabilità di infettarsi, a parità di altre condizioni. L’uso della mascherina, se questa è scelta e indossata correttamente, può abbattere quindi di molto la probabilità di contagio e, quando anche quest’ultimo si verificasse, la barriera costituita dalla mascherina permette di assorbire una carica virale inferiore.

Un esperimento effettuato dall’Istituto per le Malattie infettive americano (NIAD) [24] ha mostrato come il virus SARS-CoV-2 possa rimanere sospeso nell’aria, sotto forma di aerosol, fino a 3 ore. Tuttavia, la quantità di virus si dimezza nel giro di un’ora ed è bassa negli spazi aperti. Pertanto, la minaccia di contagio può arrivare soprattutto dai luoghi chiusi (o semi-chiusi) e affollati, con i mezzi di trasporto (metropolitane, autobus, tram, treni locali, etc.) a farla da padrone per l’elevata densità di persone associata.

Una volta capito il concetto di carica virale, si può comprendere facilmente perché il COVID-19 ha spesso sterminato intere famiglie: in Cina come in Italia e in altri Paesi sono state innumerevoli le famiglie i cui membri si sono tutti ammalati e sono morti uno dopo l’altro in casa (per la saturazione degli ospedali e per la mancanza dei cosiddetti “COVID hotel”). Infatti, il non usare le mascherine in famiglia e il non isolare subito i contagiati espone gli altri familiari a dosi di virus assai elevate, donde gli esiti infausti.

7) Mascherine, sterilizzatori, pulsossimetri, etc.: cosa devo sapere?

Secondo uno studio anticipato dal The New England Journal of Medicine [25], la carica virale del SARS-CoV-2 rilevata nei pazienti COVID asintomatici era simile a quella dei sintomatici, il che dà un’idea quantitativa del potenziale di trasmissione dei soggetti asintomatici o minimamente sintomatici rispetto ai sintomatici. Dato che non possiamo sapere se siamo nei pressi di un soggetto asintomatico o paucisintomatico che potrebbe trasmetterci l’infezione, l’indossare una mascherina di protezione è fondamentale.

La mascherina non serve solo a impedire l’infezione, ma anche a ridurre la carica virale cui potremmo essere esposti. Oltre all’utilità nella protezione individuale, l’uso di massa delle mascherine può ridurre di molto la trasmissione dei virus respiratori. Ad es., secondo uno studio di Wu et al. [26], durante l’epidemia di SARS del 2003 l’abbattimento della trasmissione virale è stato addirittura del 70%. E, sempre grazie all’uso delle mascherine, nell’inverno 2002-2003 a Hong Kong l’influenza di fatto non circolò.

Esistono, come è noto, tre diversi tipi di mascherine di tipo medico: (1) chirurgiche (di forma rettangolare, sono inadatte a un filtraggio superiore al 65%, non essendo aderenti al viso); (2) respiratorie di tipo FFP2 (o N95), che filtrano almeno il 95% delle particelle di 0,6 micron o più grandi; (3) respiratorie di tipo FFP3 (o N99), che filtrano almeno il 99% delle particelle di 0,6 micron o più grandi. Queste ultime, però, se espellono l’aria della persona tramite una valvola non proteggono le altre persone (sono perciò dette “egoiste” e non devono mai essere usate per la protezione dal SARS-CoV-2).

Poiché le nuove varianti attecchiscono molto più facilmente, è senza dubbio raccomandabile l’utilizzo di mascherine FFP2, ma è importante accertarsi che siano prodotte in Italia e che forniscano una certificazione rilasciata da un ente del settore. Oggi le si possono trovare facilmente digitando nei siti di commercio elettronico “mascherine ffp2 italiane certificate”. Ovviamente, vanno poi indossate bene adattando l’archetto metallico alla forma del proprio naso. Una FFP2 è garantita per un uso di almeno 8 ore, ma se la usate solo negli ambienti chiusi (e all’esterno usate una chirurgica) di solito dura di più.

Le mascherine e le superfici possono essere sterilizzate in modo assai efficace con una soluzione idroalcolica al 70%, come illustrato in un mio articolo sull’argomento [3]. Gli ambienti, invece, possono essere sterilizzati facilmente usando lampade germicide a raggi UV-C, che vanno usate sempre solo in assoluta assenza di persone, poiché i raggi UV-C sono cancerogeni per la pelle e molto pericolosi per gli occhi. Per sterilizzare una grande stanza in 10 minuti, servono circa 5 W di UV-C [4]. Sconsiglio invece l’uso di ozonizzatori, perché potrebbero operare nella regione “tossica” per i polmoni.

Consiglio inoltre di avere a casa un saturimetro, detto anche pulsossimetro (tenetevi invece alla larga dalle app per misurare l’ossigeno). I modelli con il miglior rapporto qualità / prezzo sono quelli marchiati GIMA, usati anche dagli equipaggi delle ambulanze, mentre eviterei quelli cinesi low-cost, quasi del tutto inutili. Un normale livello di ossigeno nel sangue (SpO2), per polmoni sani, è compreso in genere fra il 95% ed il 100%. In generale, una lettura del saturimetro inferiore al 95% è considerata bassa. Pertanto, già al di sotto di questa soglia – specie se il trend è decrescente – andrebbe avvisato il medico.

Nel caso ci si dovesse mai trovare in una situazione come quella verificatasi nella primavera del 2020 – con gli ospedali pieni e le persone malate di COVID che si dovevano curare a casa da sole, ma il loro numero era tale che c’era scarsità di bombole di ossigeno – è bene sapere che, in assoluta mancanza di alternative, per una persona che ha difficoltà nel respirare si può usare, in associazione a una maschera per ossigenoterapia, un concentratore di ossigeno, che lo produce da solo per cui il gas non si esaurisce mai. Ormai ne esistono sul mercato vari modelli, ed i migliori producono 6-8 litri al minuto [4].

8) Una domanda dei medici: come vanno trattati i pazienti a casa?

Come in tutte le aree della medicina, anche per le cure domiciliari il grande studio clinico “randomizzato, controllato con placebo, a gruppi paralleli in pazienti appropriati a rischio con esiti significativi” rappresenta il gold standard teorico per raccomandare la terapia. Questi standard, però, non sono abbastanza rapidi o rispondenti alla pandemia COVID-19 [9], in quanto seguire i pazienti a casa per uno studio controllato rappresenta uno sforzo organizzativo ed economico molto grande da affrontare.

Se gli studi clinici controllati sui pazienti a casa non sono facili, è evidentemente necessario esaminare altre informazioni scientifiche relative all’efficacia e alla sicurezza dei farmaci. Pertanto, nel contesto delle attuali conoscenze, data la gravità della malattia e la relativa disponibilità, costo e tossicità delle terapie, ogni medico e paziente devono fare una scelta: vigile attesa passiva in auto-quarantena o trattamento attivo più o meno “empirico” allo scopo di ridurre le probabilità ospedalizzazione e la morte [9], ad es. sfruttando il protocollo dei colleghi medici di base del già citato “Comitato per le Cure Domiciliari COVID-19”.

Quest’ultimo si basa principalmente sull’idrossiclorochina in associazione con l’azitromicina, nonché sull’eparina e altri farmaci, secondo lo schema molto dettagliato pubblicato in uno studio di McCoullogh et al. [9], coordinato dall’epidemiologo statunitense Harvey Risch. Uno studio condotto in Francia su pazienti ricoverati e positivi al SARS-CoV-2, e confermato da uno successivo più ampio, ha in effetti evidenziato che l’aggiunta di azitromicina all’idrossiclorochina ha determinato una riduzione della carica virale e un significativo miglioramento del decorso della patologia [29].

Algoritmo di trattamento per la malattia COVID-19 confermata in pazienti ambulatoriali a casa in quarantena automatica. BMI = indice di massa corporea; CKD = malattia renale cronica; CVD = malattia cardiovascolare; DM = diabete mellito; Dz = malattia; HCQ = idrossiclorochina; Mgt = gestione; O2 = ossigeno; Ox = ossimetria; Yr = anno. (fonte: McCoullogh et al. [9])

L’infezione da SARS-CoV-2, come molte altre, può essere più suscettibile di terapia nelle prime fasi del suo corso, ma probabilmente non risponde agli stessi trattamenti molto tardi nelle fasi ospedaliere e terminali della malattia. Perciò, è necessario iniziare il trattamento prima che i risultati di tamponi PCR siano noti. Inoltre, poiché il COVID-19 esprime un ampio spettro di malattie che progrediscono dall’infezione asintomatica a quella sintomatica fino alla fulminante sindrome da distress respiratorio e al cedimento del sistema multiorgano, è necessario personalizzare la terapia [9].

L’estensione a livello nazionale del protocollo adottato di recente dal Piemonte, mutuato dall’esperienza del“Comitato per le Cure Domiciliari” (e basato sull’impiego della vitamina D  della idrossiclorochina, etc.) – e che pare aver dato risultati notevoli, sebbene non pubblicati per le ragioni di cui sopra – sarebbe forse preferibile rispetto all’adozione di linee guida “teoriche” (come quelle proposte da Remuzzi [30], da Matteo Bassetti, etc.), che si basano su studi di farmaci testati in fasi di cura del COVID più avanzate, ma non ancora in fase precoce con studi controllati (tuttavia uno studio sull’approccio Remuzzi è in corso).

In ogni caso, perfino uno di questi ipotetici protocolli “sintetici”, teorici, non ancora validati in fase precoce rappresenterebbe, quasi certamente, un notevole “upgrade” rispetto alle indicazioni terapeutiche fornite a novembre dal Ministero della Salute nella circolare dal titolo “Gestione domiciliare dei pazienti con infezione da SARS-CoV-2” [31], basata sulle raccomandazioni dell’AIFA (e sospesa dal TAR del Lazio il 4/3/21). In base a tale documento, si possono usare antinfiammatori come paracetamolo (ad es. Tachipirina) o FANS per pazienti sintomatici, in particolare in caso di febbre, dolori articolari o muscolari.

Il testo dichiara, inoltre, che “l’uso dei corticosteroidi è raccomandato nei soggetti con malattia COVID-19 grave che necessitano di supplementazione di ossigeno”. Invece, l’eparina è indicata solo nei soggetti immobilizzati per l’infezione in atto. Al medico, infine, la circolare suggerisce di avere un approccio di “vigile attesa” con “misurazione periodica della saturazione dell’ossigeno” tramite il saturimetro. Nel documento si suggerisce poi di monitorare i parametri vitali tramite un punteggio: quello consigliato è il “Modified Early Warning Score”. Ma quanti medici di base hanno l’hanno davvero calcolato?

9) Come posso confrontare l’efficacia dei vari vaccini anti-COVID?

Nel valutare i vaccini, in realtà, si usano due diversi tipi di indicatori – l’efficacia e l’efficienza – e poiché i media non spiegano mai la differenza fra i due, è facile che nei lettori si ingeneri una grande confusione, poiché non si può confrontare ad es. l’efficacia di un vaccino X con l’efficienza di un vaccino Y, poiché sarebbe un po’ come confrontare le mele con le pere: semplicemente non ha senso. Inoltre, quella che ci interessa da un punto di vista pratico è più l’efficienza che non l’efficacia.

La cosiddetta “efficacia” (efficacy) di un vaccino è la percentuale di riduzione dell’incidenza della malattia in un gruppo vaccinato rispetto a un gruppo non vaccinato in condizioni ottimali. La cosiddetta “efficienza” (effectiveness) del vaccino, invece, è la capacità del vaccino nel prevenire esiti di interesse per il “mondo reale” [2]. La seconda dà una valutazione meno rigorosa (anche perché non è ottenuta attraverso uno studio controllato randomizzato su un campione prescelto) ma più rilevante dal punto di vista sanitario.

In termini statistici, l’efficacia è un’unità di misura che definisce quanto un vaccino riduce il rischio di contrarre una malattia, come ad esempio il COVID-19. In pratica, nei trial si osserva quante persone vaccinate con il vaccino in esame hanno contratto il SARS-COV-2 e si compara questo dato con quante persone (che hanno ricevuto soltanto il placebo) si sono ammalate. La differenza risulta nella percentuale di efficacia dichiarata dai produttori (ad es. 95% per il Pfizer contro la variante originale del virus).

Zero efficacia significa che i vaccinati corrono lo stesso rischio delle persone che non hanno ricevuto il vaccino. Un’efficacia del 100% vuol dire che il rischio di contrarre la malattia è risultato azzerato. Solitamente, però, l’efficacia varia a seconda del Paese in cui viene effettuato lo studio. Ad esempio, le sperimentazioni dei vaccini anti-COVID in genere mostrano un’efficacia più bassa in Sudafrica o in Sud America, dove sono largamente presenti due varianti verosimilmente indotte dai vaccini stessi [32].

L’efficienza di un vaccino, invece, è la sua capacità di ridurre esiti spiacevoli per la persona o per il sistema sanitario, che nel caso del COVID-19 sono, essenzialmente tre: (1) l’ospedalizzazione in reparti a bassa intensità di cura; (2) il ricovero nel reparto di terapia intensiva; (3) la morte del paziente. Da questo punto di vista, ad esempio, il vaccino Pfizer con cui in Israele si è vaccinato oltre il 95% della popolazione ha mostrato di avere una capacità assai elevata di prevenire tutti e tre questi esiti.

Dunque, per poter confrontare i vari vaccini anti-COVID, in realtà conoscere la sola efficacia risultante dai trial (in cui il vaccino è somministrato a un campione di persone sane selezionate ad hoc) risulta utile fino a un certo punto. Una volta che il vaccino viene impiegato sul campo per la vaccinazione di massa, è l’efficienza il dato che dobbiamo valutare e confrontare, anche se la somministrazione a una popolazione non selezionata può introdurre dei bias, e quindi i dati ottenibili sono meno “solidi”.

Dai dati disponibili finora, i vaccini attualmente usati in Italia (Pfizer, Moderna e Astrazeneca) mostrano tutti una buona efficienza contro la variante inglese (B.1.1.7), che dunque non è resistente agli anticorpi neutralizzanti da essi indotti. Al contrario, la variante sudafricana (B.1.351) pone maggiori problemi, non tanto per i vaccini a mRNA (Pfizer e Moderna), quanto per Astrazeneca, i cui anticorpi neutralizzanti hanno mostrato un’attività molto bassa contro questa variante, un serio segnale di allarme sui problemi che i virus resistenti possono porre nel prossimo futuro [33].

10) I vaccini anti-COVID sono sicuri o corro qualche pericolo?

La sicurezza di un vaccino dipende dai suoi effetti collaterali. Questi possono essere divisi, essenzialmente, in tre diversi tipi: (1) effetti a breve termine (minuti, ore, pochi giorni), (2) effetti a medio termine (settimane, mesi), e (3) effetti a lungo termine (anni). In un vaccino normale vengono studiati tutti e tre i tipi di effetti, ma nel caso dei vaccini anti-COVID – sviluppati frettolosamente per uso “in emergenza”: (a) gli effetti a lungo termine non sono stati studiati; (b) si tratta, fondamentalmente, di vaccini “leaky” (vedi  [32]), il che può comportare una serie di conseguenze imprevedibili sul medio termine.

Ma vediamo le cose più in dettaglio. Gli effetti a breve termine dei vaccini anti-COVID attualmente in commercio in Italia (Pfizer, Moderna, Astrazeneca) non pongono particolare motivo di preoccupazione, se non forse per le donne incinte, per chi avesse un’infezione COVID in corso (altra circostanza non testata nei trial, per cui potrebbe essere prudente realizzare un test antigenico prima del vaccino), e – verosimilmente – per la popolazione più giovane. Infatti, come ora vedremo, il rapporto rischi/benefici sembra invertirsi al di sotto di una certa età, sebbene non esistano dati diretti sull’argomento.

Grazie al database USA degli effetti avversi (VAERS), l’ing. A. Tsiang ha stimato [34], in modo semplice ed elegante, che le morti per milione di dosi somministrate associate ai vaccini Pfizer + Moderna sono state circa 100 volte maggiori di quelle segnalate per la vaccinazione antinfluenzale 2019-20 (vedi l’Appendice qui sotto). In pratica, le morti imputabili a questi due vaccini anti-COVID sono pochissime: solo 23 per milione di dosi (in ottimo accordo con i 21,2 e 28,3 morti/milione segnalati, rispettivamente, per Pfizer e Astrazeneca nel database del Regno Unito (MHRA) [35]. Ciò significa che il rischio di morire per il vaccino uguaglia quello di morire per COVID-19 per i ragazzi di circa 25 anni (vedi Appendice).

Il rischio di morire per una dose di vaccino anti-COVID posto nella giusta prospettiva. Anche considerando un numero di dosi ricevute di vaccino anti-COVID pari a 2 o 3, si tratta comunque di un rischio di morte statisticamente molto basso rispetto ad altri cui siamo esposti comunemente nel corso della nostra vita. (fonte degli altri rischi: U.S. National Safety Council – Center for Health Statistics)

Per quanto riguarda invece gli effetti a medio termine dei vaccini anti-COVID in commercio, attualmente non si conosce la loro incidenza (ad es. quella di complicazioni tromboemboliche o di eventuali risposte infiammatorie che portino a condizioni autoimmuni) a molte settimane dalla dose ricevuta (quando tali eventi vengono più difficilmente inseriti nei database degli affetti avversi) e tanto meno conosciamo gli effetti di tali vaccini quando l’immunità tende a svanire, verosimilmente dopo molti mesi. Inoltre, prima o poi potrebbero emergere nuove varianti del virus che “bypasseranno” del tutto i vaccini attuali e/o saranno più virulente e pericolose per la popolazione, come ho illustrato con vari esempi storici qui [32].

Il virologo e grande esperto di vaccini Geert Vanden Bossche (che ha lavorato per OMS, FDA, CDC, GAVI, Bill e Melinda Gates Foundation, etc.) è assai preoccupato: fare una vaccinazione di massa a pandemia in corso, con vaccini “non sterilizzanti” (come quelli ora usati [32]) ha un’altra importante conseguenza: la soppressione temporanea del baluardo contro questo virus costituito dall’immunità naturale “innata”, cosa assai problematica (specie fra i più giovani), poiché prima o poi la pressione evolutiva esercitata dai vaccini può selezionare ceppi mutanti di SARS-CoV-2 resistenti ai vaccini – come sta già accadendo con la resistenza agli antibiotici – rendendo addirittura controproducente l’immunità artificiale indotta dagli attuali vaccini, che è solo “proteina spike-specifica” [36, 37].

Infine, normalmente il processo per approvare un nuovo vaccino richiede un decennio, così da poter escludere effetti a lungo termine. La durata troppo breve degli studi fatti per ottenere le autorizzazioni “in emergenza” dalle autorità regolatorie (FDA, EMA, etc.) – la FDA ad es. richiede solo 2 mesi di dati raccolti – non consente una stima realistica degli effetti tardivi. Ad esempio, per i vaccini a mRNA (mai usati prima!) non è stato studiato l’impatto sulla fertilità e l’eventuale trasmissione alla progenie di mutazioni dannose e, per quelli a vettore virale, l’eventuale cancerogenesi. Non a caso, a chi fa il vaccino anti-COVID in Italia viene fatto firmare un modulo di consenso informato che nell’allegato  recita “non è possibile al momento prevedere danni a lunga distanza”.

In conclusione, poiché i vaccini devono essere somministrati solo se i benefici superano i rischi, in considerazione: (1) di quanto fin qui illustrato, (2) del fatto che i vaccini “leaky” non producono immunità di gregge, e (3) tenendo conto del fatto che circa il 96% dei morti per COVID in Italia sono costituiti da over 60 [38] (più alcuni individui fragili), a mio avviso si dovrebbe vaccinare solo la popolazione a rischio – appunto, over 60 e persone “fragili” di ogni classe di età (ad es. immunodepressi, etc.), come del resto avviene da sempre per la vaccinazione contro i virus dell’influenza – senza far correre alla popolazione più giovane anche i rischi sul medio e lungo termine, oggi del tutto imprevedibili per dei vaccini sperimentali.

APPENDICE – Stima della mortalità legata ai vaccini anti-COVID negli USA

L’ing. A. Tsiang dell’Environmental Health Trust (EHS) statunitense, ispirato da un articolo apparso sulla testata The Epoch Times [39], ha stimato i tassi di mortalità legati ai due vaccini anti-COVID usati negli USA (Pfizer e Moderna) tramite un attento confronto, possibile grazie al database pubblico VAERS, con i tassi di mortalità riscontrati nella vaccinazione antinfluenzale 2019-20, che sono risultati essere di circa 100 volte più bassi. Infatti, se le morti segnalate come affetti avversi dei vaccini anti-COVID fossero per la maggior parte casuali, logicamente dovrebbero essere simili (in percentuale sulle dosi somministrate) a quelle segnalate per l’influenza, e non due ordini di grandezza più grandi. Ma ecco quanto ha trovato.

Poiché i morti negli USA segnalati al VAERS nella campagna antinfluenzale 2019-2020 sono stati circa 45 su 170 milioni di vaccinati, l’incidenza è stata dello 0,000026%, pari a circa 0,26 morti per milione di dosi. Viceversa, poiché i morti segnalati in relazione ai vaccini anti-COVID negli USA sono stati, dal 14 dicembre 2020 al 19 febbraio 2021 (circa 2 mesi), 966 su 41.977.401 dosi somministrate, l’incidenza è stata dello 0,0023%, pari a circa 23,0 casi per milione di dosi. Dunque, i morti in eccesso prodotti dai 2 vaccini anti-COVID Pfizer + Moderna sono stimabili in (23,0 – 0,26 =) 23 morti per milione di dosi somministrate. Siamo quindi ora in grado di stimare il rapporto rischi-benefici per le varie classi di età.

Si noti che il tasso di mortalità da infezione COVID negli USA è stato, secondo i CDC di Atlanta, dello 0,003% per la fascia di età 0-19 anni, e dello 0,02% per la fascia di età 20-49 anni. Quindi il rapporto rischi-benefici nel fare questi due vaccini sembra essere maggiore solo per le persone di età, verosimilmente, maggiori di circa 25 anni. Per le persone più giovani di (all’incirca) questa età, il rischio di morire per il vaccino o per il COVID-19 sembra essere dunque praticamente equivalente, e ciò dovrebbe essere un aspetto da valutare con attenzione in una seria politica di salute pubblica, anche in considerazione del fatto che poco o nulla si sa sui possibili effetti a medio o a lungo termine dei vaccini a mRNA (mai usati prima sull’uomo).

Vorrei sottolineare che questo risultato si può considerare molto “solido”, poiché:

  1. La platea dei vaccinati per l’antinfluenzale è composta per lo più da anziani, quindi in realtà se si facessero le correzioni per età il rapporto in questione (100 x) risulterebbe ancora più grande.
  2. Entrambe le vaccinazioni sono state fatte a una platea di persone vastissima (decine di milioni di persone), perciò l’errore statistico risulta essere del tutto ininfluente.
  3. Vi è un ottimo accordo con i dati ottenuti per il Regno Unito dal database MHRA [35] e con quelli ottenibili, sia pure indirettamente, per l’Italia (ciò sarà mostrato in un futuro articolo).
  4. Secondo l’ultimo rapporto dell’AIFA, il numero di segnalazioni (per 100.000 dosi) degli effetti avversi dei vaccini anti-COVID appare essere maggiore per le classi di età più giovani [40].

Riferimenti bibliografici

[1]  Zahra S.A. et al, “Can symptoms of anosmia and dysgeusia be diagnostic for COVID‐19?”, Brain and Behaviour, Settembre 2020.

[2]  Istituto Superiore di Sanità, “Caratteristiche dei pazienti deceduti positivi all’infezione da SARS-CoV-2 in Italia”, Epicentro, Dicembre 2020.

[3]  Guan W. et al., “Clinical Characteristics of Coronavirus Disease 2019 in China”, The New England Journal of Medicine, Febbraio 2020.

[4]  Cabanillas F. et al., “Home-based management of COVID-19”, preprint, MedRxiv, Gennaio 2021.

[5]  Palazzo S., “Ecco come curare il Covid a casa”/ Il documento di Remuzzi: “Così evitiamo ricoveri”, Il Sussidiario, 14 dicembre 2020.

[6]  Menichella M., “Vitamina D e minore mortalità per COVID-19: le evidenze e il suo uso per prevenzione e cura”, Fondazione David Hume, 23 febbraio 2021.

[7]  Infante M. et al., “Low Vitamin D Status at Admission as a Risk Factor for Poor Survival in Hospitalized Patients With COVID-19: An Italian Retrospective Study”, J. Am. Coll. Nutr., Febbraio 2021.

[8]  Isaia G., D’Avolio A., e altri 155 medici italiani, appello promosso dall’Accademia di Medicina di Torino, “Vitamina D nella prevenzione e nel trattamento del COVID-19: nuove evidenze”, Medico e paziente, 3 dicembre 2020.

[9]  McCullough P.A. et al., “Rationale for early outpatient covid-19”, American Journal of Medicine, Gennaio 2021.

[10]  Grind D. et al., “Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, preprint, medRxiv, 8 marzo 2021.

[11]  Luks A.M. et al., “Pulse Oximetry for Monitoring Patients with COVID-19 at Home. Potential Pitfalls and Practical Guidance”, Ann. Am. Thorac. Soc., Settembre 2020.

[12]  Gaspar H.A. et al., “Home Care as a safe alternative during the COVID-19 crisis”, Rev. Assoc. Med. Bras., Novembre 2020.

[13]  Ferro A., “Ecco la terapia italiana anti-Covid che il Governo non prende in considerazione”, Il Giornale, 10 febbraio 2021.

[14]  Kim P.S. et al., “Therapy for Early COVID-19: A Critical Need”, JAMA, Novembre 2020.

[15]  Kennedy D.A. et al., “Why does drug resistance readily evolve but vaccine resistance does not?”, Proc. R. Society Biology, Marzo 2017.

[16]  Su Y. et al., “Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19”, Cell, Dicembre 2020.

[17]  Mrityunjaya M. et al., “Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19”, Front. Immunol., Ottobre 2020.

[18]  Guan W.J. et al., “Clinical characteristics of coronavirus disease 2019 in China”, New England Journal of Medicine, 2020.

[19]  Li Q. et al., “Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia”, New England Journal of Medicine, 2020.

[20]  Van Driel M.L. et al., “Oral vitamin C supplements to prevent and treat acute upper respiratory tract infections”, Cochrane Database Syst Rev., 2019.

[21]  Catanzaro M. et al., “Immunomodulators inspired by nature: a review on curcumin and Echinacea”, Molecules, 2018.

[22]  Chen T.Y. et al., “Inhibition of enveloped viruses infectivity by curcumin”, PLoS ONE, 2013.

[23]  Robilotti, E. et al., “Norovirus”, Clinical Microbiology Reviews, 2015.

[24]  Doremalen N. et al., “Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1”, Letter, The New England Journal of Medicine, Aprile 2020.

[25]  Zou L. et al., “SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients”, Letter, The New England Journal of Medicine, Marzo 2020.

[26]  Wu J. et al., “Risk Factors for SARS among Persons without Known Contact with SARS Patients, Beijing, China”, Emerging Infectious Diseases, 2004.

[27]  Menichella M., “Come sterilizzare e ‘riciclare’ una mascherina”, Esperimentanda, 2020.

[28]  Cicala L., “Coronavirus – Concentratori di ossigeno”, Theremino, 2020.

[29]  Gautret P. et al., “Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial”, Int. J. Antimicrob. Agents, 2020.

[30]  Perico N. et al., “A recurrent question from a primary care physician: How should I treat my COVID-19 patients at home?”, Clinical and Medical Investigations, Novembre 2020.

[31]  Direzione Generale della Programmazione sanitaria, “Gestione domiciliare dei pazienti con infezione da SARS-CoV-2”, Portale web del Ministero della Salute, 30 novembre 2020.

[32]  Menichella M., “I vaccini anti-COVID: perché ci attende un future pieno di incognite”, Fondazione David Hume, 10 marzo 2021.

[33]  Moore J.P., “Approaches for Optimal Use of Different COVID-19 Vaccines Issues of Viral Variants and Vaccine Efficacy”, JAMA, 4 marzo 2021.

[34]  Tsiang A. (Environmental Health Trust, USA), “200X Higher Overall Deaths after COVID-19 vs. Flu vaccines”, Comunicazione tramite mailing list, 11 marzo 2021.

[35]  Ricolfi L., Analisi dei dati del database MHRA degli effetti avversi nel Regno Unito (per un articolo in preparazione), Comunicazione personale, 19 marzo 2021.

[36]  Vanden Bossche G., “Mass Vaccination in a Pandemic – Benefits versus Risks”, Intervista effettuata dal Dr. Philip McMillan, YouTube, 6 marzo 2021.

[37]  Vanden Bossche G., “Public Health Emergency of International Concern”, appello indirizzato alle principali Autorità sanitarie di tutto il mondo, Agenzia Stampa Italia, 2020.

[38]  Menichella M., “Perché la vaccinazione degli anziani va maneggiata con cura: un’analisi per scenari”, Fondazione David Hume, 4 febbraio 2021.

[39]  Farber C., “Adverse incident reports show 966 deaths following vaccination for COVID-19”, The Epoch Times, Febbraio 2021.

[40]  Agenzia Italiana del Farmaco, “Secondo Rapporto sulla sorveglianza dei vaccini COVID-19 (27/12/2020 – 26/2/2021)”, Sito web dell’AIFA, 2020.

 




I vaccini anti-COVID: perché ci attende un futuro pieno di incognite

Essendo il comunicatore scientifico l’interfaccia, il trait d’union, fra gli scienziati e il mondo politico, la divulgazione scientifica ha fra i suoi compiti principali quello – assai elevato ma spesso disatteso – di informare la classica “casalinga di Voghera” e, soprattutto, il politico di turno di quel che davvero si pensa nel mondo internazionale della ricerca su temi di attualità, affinché i singoli individui, ma principalmente i decisori politici, possano adottare a ragion veduta misure e comportamenti quanto più consoni e lungimiranti possibile, non limitandosi ad “inseguire gli eventi” come è finora accaduto nella gestione italiana della pandemia di COVID-19. Perché stanno nascendo nuove e preoccupanti varianti del virus SARS-CoV-2? Quali sono i rischi conseguenti per una campagna multi-vaccinale ed, a cascata, per la nostra società sempre più stremata dal punto di vista economico e sociale? Quali sono gli scenari futuri che dobbiamo aspettarci nel caso migliore e in quello peggiore? Questo articolo cerca di rispondere in modo chiaro e documentato a tutte queste domande, o quanto meno di fornire al lettore gli elementi fattuali e gli strumenti culturali affinché possa arrivare da solo a una facile risposta.

Se non venissero usati vaccini per cercare di indurre un’immunità protettiva, la pandemia di COVID-19 – secondo i maggiori esperti mondiali – si attenuerebbe lentamente nel tempo fino a diventare una malattia endemica, come l’influenza. Quest’ultima famiglia di virus ha mostrato lo stesso andamento almeno quattro volte negli ultimi 100 anni, così come i coronavirus stagionali. Ma nonostante la maggior parte dei vaccini anti-COVID provochino una reazione immunitaria molto più forte dell’infezione naturale con il virus, senza i vaccini anti-COVID e senza un piano di prevenzione e cura domiciliare precoce vi sarebbero nel frattempo (cioè fino alla svilupparsi di un’immunità naturale nella popolazione) molti morti in poco tempo fra gli over 70 e/o si sarebbe costretti, in Paesi come l’Italia che non sono stati in grado di implementare alcuna misura alternativa, a frequenti lockdown per non saturare terapie intensive e ospedali.

Immagine ottenuta mediante microscopio elettronico a trasmissione (MET) di particelle del virus SARS-CoV-2 (in rosso), isolate da un paziente affetto da COVID-19, mentre attaccano le cellule del tessuto polmonare circostante. (fonte: NIAID Integrated Research Facility in Fort Detrick, Maryland).

Ora, sebbene la pressione di selezione operi raramente durante una pandemia, poiché l’infezione di solito si risolve rapidamente (anche prima che la produzione di anticorpi sia completa), durante la fase endemica la situazione è diversa, poiché la presenza di anticorpi in individui già guariti e in persone che ricevono un’immunità passiva sotto forma di plasma convalescente, o anticorpi monoclonali terapeutici, esercita una pressione selettiva sul virus. Ciò determinerà quindi la selezione di varianti virali con la capacità di eludere questi anticorpi. Negli individui, nel tempo possono emergere diverse varianti dello stesso virus, dando origine a quasi-specie che possono soppiantare le versioni preesistenti [1].

I vaccini tentano di contrastare questo problema, ma possono introdurre anch’essi una pressione selettiva.  L’impiego di vaccini, dunque, non è neutrale rispetto a un virus, ma in generale ne può influenzare l’evoluzione, come del resto possono farlo anche altri tipi di misure di sanità pubblica. Ciò può portare all’emergere di mutazioni nel genoma virale, per cui il ceppo endemico può eludere la risposta immunitaria provocata da ceppi precedenti dello stesso virus, complicando potenzialmente la vita sia ai ricercatori (che devono monitorare l’efficacia dei vaccini ed eventualmente adattarli alle nuove varianti) sia alle persone (cui potrebbero essere date nei prossimi mesi o anni “terze” dosi e forse anche “quarte” o “quinte”).

L’importanza della “teoria evolutiva della virulenza” nel controllo delle epidemie

L’opinione che la maggior parte dei medici e degli autori di testi di medicina aveva, fino a non molti anni fa, sull’evoluzione della “virulenza” – cioè, in pratica, del grado di aggressività per l’ospite umano – di un agente patogeno (virus, batterio o altro parassita), era che, quando la nostra specie e il parassita coevolvono per un lungo periodo di tempo, quest’ultimo tende a diventare meno virulento, evolvendo in definitiva verso una forma più benigna per l’uomo. Quest’idea era peraltro supportata da esempi famosi come quello del virus della mixomatosi, in cui un “nuovo” virus introdotto dall’uomo fra i conigli australiani si era evoluto, nel giro di pochi anni, in un germe assai meno virulento [2].

Sin dalla fine degli anni Settanta, tuttavia, alcuni biologi evoluzionisti, tra cui il prof. Paul W. Ewald dell’Università di Louisville (USA), hanno proposto un modo completamente nuovo di vedere le cose, che ha permesso di giungere a una vera e propria “teoria evolutiva della virulenza”, ben illustrata dallo stesso Ewald nel suo bel libro Evolution of Infectious Disease [3], che ebbi modo di studiare poco dopo la sua pubblicazione, quasi 25 anni fa. Secondo questi scienziati, la coevoluzione tra un agente patogeno e l’ospite umano – e, più in generale tra un parassita e una specie ospite – non evolve necessariamente verso una coesistenza benigna, bensì può rendere il germe più o meno virulento.

Il biologo evolutivo Paul Ewald e il suo libro in cui illustra la “teoria evolutiva della virulenza”.

Difatti, secondo la teoria evolutiva della virulenza, che ha reso ormai superata la vecchia teoria dei medici (basata sull’idea che i parassiti arrecanti poco o nessun danno ai loro ospiti hanno, come specie, la massima probabilità di sopravvivere sul lungo termine: essi prosperano – si pensava – perché anche gli organismi loro ospiti prosperano, per cui la selezione naturale deve favorirne una minore virulenza), in realtà la selezione naturale premia i parassiti che hanno la massima probabilità di sopravvivere sul lungo termine non come specie, bensì come singoli individui, secondo una visione darwiniana dell’evoluzione applicabile perfettamente non solo agli animali e alle piante ma anche ai microrganismi (e di cui il recente sviluppo della resistenza dei batteri agli antibiotici non è altro che l’ennesima conferma) [28].

Ma è proprio questo il punto, secondo gli evoluzionisti. Un patogeno resta innocuo o poco virulento finché le probabilità di contagio sono basse. Se però quel parassita “scopre” che passare da un individuo all’altro è diventato facile (come avvenne ad es. all’influenza “Spagnola” durante la Prima guerra mondiale, quando l’infezione poteva trasmettersi facilmente fra i soldati nelle trincee), allora può avere tutto l’interesse a riprodursi – e quindi a diffondersi – più rapidamente, anche a costo di uccidere il suo ospite. Viceversa, se nel caso di un patogeno altamente virulento il contagio di altre persone diventa per qualche ragione più difficoltoso, il germe avrà interesse a diventare meno virulento, per permettere all’ospite di restare attivo e assicurare al parassita la possibilità di entrare in contatto con altri potenziali ospiti.

Pertanto, la virulenza di un agente patogeno può diminuire o aumentare nel tempo, a seconda di quale opzione sia più vantaggiosa per i suoi geni, e ciò dipende dalla complessa influenza e interazione reciproca di vari: (1) fattori biologici, come la modalità e capacità di trasmissione del parassita, la sua capacità di sopravvivere per lunghi periodi di tempo al di fuori di un organismo ospite e la resistenza opposta dal sistema immunitario dell’ospite stesso; (2) fattori sociali, quali la densità di popolazione di una comunità umana, l’ambiente di vita e il comportamento delle persone (quest’ultimo, in particolare, determina la via e il momento della trasmissione del patogeno tra gli individui) [3].

Più della modalità di trasmissione e degli altri fattori biologici, comunque, è il comportamento dell’uomo a giocare, insieme agli altri fattori sociali, un ruolo fondamentale nell’evoluzione della virulenza di un agente patogeno che affligga la nostra specie. Certe scelte comportamentali delle singole persone nella vita di tutti i giorni, e quelle collettive in tema di sanità pubblica, oltre a preservare direttamente i singoli individui dal contrarre una determinata infezione, hanno un effetto meno immediato, ma fondamentale, nel ridurre il grado di virulenza del patogeno associato. In questo senso, il distanziamento sociale ed i lockdown con il COVID hanno avuto un’utilità accessoria: tenere sotto controllo la virulenza.

La letteratura medica offre ampie prove a favore di tali effetti, prodotti per lo più ostacolando la trasmissione degli agenti patogeni per via “culturale”: cioè, nel caso di molte malattie batteriche, informando sulla necessità di migliorare le condizioni igieniche (personali, delle fonti idriche, ospedaliere, eccetera); nel caso dell’AIDS, spingendo i soggetti delle categorie a rischio a usare siringhe non contaminate e ad adottare pratiche sessuali sicure (uso di preservativi, diminuzione della promiscuità e dei comportamenti ad alto rischio), e così via. Non è un caso, secondo Ewald, che del virus HIV si sia prodotta, in Africa, una variante molto più virulenta di quella che circola in Europa. [3]

L’applicazione sistematica alla medicina dell’approccio darwiniano alla virulenza costituisce, insomma, una nuova strada assai utile per contrastare i nuovi agenti patogeni, soprattutto virali, compresi quelli che attaccheranno in futuro l’uomo – per i quali non saranno disponibili subito vaccini – e per tenere sotto controllo quelli che già ci affliggono, sempre più difficilmente contrastabili dai trattamenti tradizionali con antibiotici o con altri farmaci. Infatti, esaminando i vari fattori biologici e sociali che influenzano la virulenza di un determinato patogeno, i biologi evoluzionisti possono prevedere i suoi decorsi evolutivi, scoprire ciò che più ci rende vulnerabili ad esso, e mettere a punto le terapie e i comportamenti sociali più adeguati per trasformare un pericoloso parassita in un germe meno temibile [2].

La “resistenza ai vaccini”: un pericolo legato a certi nuovi tipi di vaccini

La maggior parte delle persone ha sentito parlare di “resistenza agli antibiotici”, ma difficilmente di resistenza ai vaccini. Questo perché la resistenza agli antibiotici è un enorme problema globale che uccide ogni anno quasi 25.000 persone in Europa e egli Stati Uniti, e più del doppio in India. Invece, la maggior parte dei programmi di vaccinazione in tutto il mondo hanno avuto – e continuano ad avere – un enorme successo nel prevenire le infezioni e nel salvare vite umane. Addirittura, grazie ai vaccini il virus del vaiolo è stato del tutto eliminato dalla faccia della Terra, sebbene ciò abbia richiesto molto tempo.

Ma l’immunizzazione vaccinale sta anche rendendo più diffuse varianti genetiche di patogeni una volta rare o inesistenti, presumibilmente perché gli anticorpi sviluppati dai vaccinati non possono riconoscere e attaccare facilmente i ceppi mutanti che sembrano diversi dai ceppi vaccinali. Ed i vaccini in fase di sviluppo contro alcuni dei patogeni peggiori del mondo – ad esempio, malaria, antrace, etc. – si basano su strategie che potrebbero potenzialmente, secondo modelli evolutivi ed esperimenti di laboratorio, incoraggiare i patogeni a diventare ancora più pericolosi [4]; e, come vedremo, lo stesso potrebbe in linea teorica accadere con i vaccini anti-COVID, o almeno con alcuni di essi, dato che in realtà ne sono in corso di sviluppo nel mondo davvero moltissimi: circa 200.

I biologi evolutivi, in realtà, non sono sorpresi che ciò stia accadendo. Si tratta, infatti, di un ennesimo esempio della teoria evolutiva della virulenza al lavoro. Un vaccino rappresenta una nuova pressione selettiva esercitata su un agente patogeno e, se il vaccino non sradica completamente il suo bersaglio, i patogeni rimanenti maggiormente adattatisi – quelli in grado di sopravvivere, in qualche modo, in un mondo immunizzato – diventeranno più comuni. Questi agenti patogeni, insomma, si evolvono in risposta ai vaccini per il processo di selezione naturale applicata ai microrganismi.

La scienza dei vaccini è incredibilmente complicata, ma il meccanismo sottostante è in realtà molto semplice. Un vaccino espone il tuo corpo a dei patogeni vivi ma indeboliti o uccisi, o anche solo a determinati frammenti di essi (come nel caso della maggior parte dei vaccini anti-COVID, che utilizzano quale antigene, o bersaglio, la famosa proteina “spike”, una sorta di uncino che aggancia le cellule dell’ospite, in particolare – inizialmente – quelle delle vie respiratorie superiori). Questa esposizione incita il tuo sistema immunitario a creare degli eserciti di cellule immunitarie, alcune delle quali secernono proteine ​​anticorpali per riconoscere e combattere i patogeni, se mai invadono di nuovo il corpo.

Questa immagine è un modello generato dal computer della proteina “spike” di una cellula SARS-CoV-2 (COVID-19), che si lega al recettore della proteina ACE-2 di una cellula umana. Attraverso questa connessione, le cellule virali sono in grado di trasferire il loro DNA e riprodursi.

Anche l’immunità indotta dai vaccini può variare, diminuendo nel tempo. Dopo aver ricevuto il vaccino per il tifo, ad esempio, i livelli di anticorpi protettivi di una persona diminuiscono nel corso di diversi anni, motivo per cui le agenzie di sanità pubblica consigliano richiami periodici per coloro che vivono o visitano regioni in cui il tifo è endemico. La ricerca suggerisce che un simile calo della protezione nel tempo si verifica anche con il vaccino contro la parotite. E ci aspettiamo che lo stesso accada con i vaccini anti-COVID, che quindi verosimilmente richiederanno dei richiami, con cadenze ancora non ben chiare.
I fallimenti dei vaccini causati dall’evoluzione indotta dal vaccino, invece, sono di natura diversa. Questi cali dell’efficacia del vaccino sono stimolati dai cambiamenti nelle popolazioni di patogeni che certi vaccini stessi causano direttamente. Gli scienziati hanno di recente iniziato a studiare in parte il fenomeno perché oggi possono farlo: i progressi nel sequenziamento genetico, infatti, hanno reso più facile vedere come i patogeni cambiano nel tempo. E molti di questi nuovi vaccini – come vedremo – hanno rafforzato la velocità con cui i patogeni mutano e si evolvono in risposta ai segnali ambientali.
Si può pensare alla vaccinazione come a una specie di setaccio, che impedisce a molti agenti patogeni di passare e sopravvivere. Ma se ne passano alcuni, quelli in quel campione non casuale che sopravviveranno preferenzialmente si replicheranno e, alla fine, cambieranno la composizione della popolazione patogena. I “quelli” citati potrebbero essere: (1) “ceppi mutanti di fuga” con differenze genetiche che consentono loro di sfuggire agli anticorpi innescati dal vaccino, o (2) semplicemente sierotipi che non sono stati presi di mira dal vaccino. In entrambi i casi, il vaccino altera il profilo genetico della popolazione patogena.

Alcuni esempi di evoluzione non desiderabile indotta da vaccini

I batteri che causano la pertosse illustrano molto bene come ciò possa accadere. Nel 1997, negli Stati Uniti le raccomandazioni [5] dei Centers for Disease Control and Prevention (CDC) iniziarono a promuovere l’adozione di un nuovo vaccino per prevenire l’infezione di questi batteri. Mentre il vecchio vaccino era realizzato utilizzando dei batteri interi uccisi, che stimolavano una risposta immunitaria efficace ma anche rari effetti collaterali, come convulsioni, la nuova versione – nota come vaccino “acellulare” – conteneva solo da due a cinque proteine ​​della membrana esterna isolate dal patogeno.

Gli effetti collaterali indesiderati sono così scomparsi, ma sono stati sostituiti da nuovi problemi inaspettati. In primo luogo, per ragioni non chiare, nel corso del tempo la protezione conferita dal vaccino acellulare è diminuita. Di conseguenza, le epidemie hanno cominciato a scoppiare in tutto il mondo. Nel 2001, degli scienziati nei Paesi Bassi [6] hanno proposto un motivo aggiuntivo per l’indesiderata rinascita: forse la vaccinazione stava stimolando l’evoluzione, facendo sì che ceppi di batteri privi delle proteine​-bersaglio, o che ne avevano versioni diverse, sopravvivessero in modo preferenziale.

Da allora gli studi hanno confermato questa idea. In un articolo del 2014 [7] pubblicato su Emerging Infectious Diseases, dei ricercatori australiani, guidati dal medico e microbiologo Ruiting Lan, presso l’Università del New South Wales hanno raccolto e sequenziato campioni del batterio della pertosse da 320 pazienti tra il 2008 e il 2012. La percentuale di batteri che non hanno espresso la pertactina, una proteina bersaglio del vaccino acellulare, è balzata dal 5% nel 2008 al 78% nel 2012, il che suggerisce che la pressione di selezione del vaccino stava consentendo ai ceppi privi di pertactina di diventare più comuni.

Anche il virus dell’epatite B, che causa danni al fegato, racconta una storia simile. L’attuale vaccino, che prende di mira principalmente una parte del virus noto come “antigene di superficie” dell’epatite B (l’antigene è una molecola in grado di essere riconosciuta dal sistema immunitario come estranea), è stato introdotto negli Stati Uniti nel 1989. Un anno dopo, in un articolo pubblicato su Lancet [8], i ricercatori hanno descritto strani risultati di una sperimentazione su un vaccino in Italia. Avevano rilevato virus dell’epatite B circolanti in 44 soggetti vaccinati, ma in alcuni di essi al virus mancava una parte di quell’antigene bersaglio. Si erano, dunque, sviluppati i già citati “ceppi mutanti di fuga”.

Negli Stati Uniti Andrew Read, professore di biologia alla Penn State University ed esperto di genetica evolutiva delle malattie infettive, sta studiando con i suoi collaboratori come l’herpesvirus che causa la cosiddetta “malattia di Marek” – un disturbo altamente contagioso, paralizzante e in definitiva mortale che costa all’industria dei polli più di 2 miliardi di dollari all’anno – potrebbe evolversi in risposta al suo vaccino. La malattia di Marek sta colpendo i polli in tutto il mondo da oltre un secolo; gli uccelli la prendono inalando polvere carica di particelle virali versate nelle penne di altri uccelli.

Questa malattia fornisce l’esempio meglio documentato dell’evoluzione della resistenza ai vaccini [9]. Il primo vaccino è stato introdotto nel 1970, quando la malattia stava uccidendo interi stormi. Funzionò bene, ma nel giro di un decennio iniziò misteriosamente a fallire; focolai di Marek hanno iniziato a scoppiare in stormi di polli vaccinati. Un secondo vaccino è stato autorizzato nel 1983 nella speranza di risolvere il problema, ma anch’esso ha gradualmente smesso di funzionare. Oggi, l’industria del pollame è al suo terzo vaccino. Funziona ancora, ma Read e altri temono che anch’esso un giorno possa fallire e non c’è un quarto vaccino in attesa. Peggio ancora, negli ultimi decenni il virus è diventato più letale.

La malattia di Marek, una patologia che colpisce i polli, ci fornisce l’esempio meglio documentato del fenomeno della resistenza ai vaccini. Nella foto, un pulcino viene vaccinato contro di essa.

In un articolo del 2015 apparso su PLOS Biology [10], Read e colleghi hanno vaccinato 100 polli, lasciandone altri 100 non vaccinati. Hanno poi infettato tutti gli uccelli con ceppi di Marek che variavano per virulenza – cioè in quanto erano pericolosi e contagiosi. Il team ha scoperto che, nel corso della loro vita, gli uccelli non vaccinati immettono molto più ceppi meno virulenti nell’ambiente, mentre gli uccelli vaccinati immettono molto più ceppi più virulenti. I risultati suggeriscono quindi che il vaccino di Marek incoraggia la proliferazione di virus più pericolosi, che di conseguenza supererebbero le risposte immunitarie degli uccelli innescate dal vaccino e quelle degli stormi vaccinati ammalati.

I vaccini non sterilizzanti ed i potenziali rischi connessi

Proprio come gli agenti patogeni hanno modi diversi di infettarci e influenzarci, i vaccini che gli scienziati sviluppano impiegano strategie immunologiche diverse. La maggior parte dei vaccini che riceviamo durante l’infanzia (ad es. contro il morbillo) impediscono agli agenti patogeni di replicarsi dentro di noi e quindi ci impediscono anche di trasmettere le infezioni ad altri: sono, cioè, i cosiddetti vaccini “sterilizzanti”. E l’immunità sterilizzante è stata un fattore chiave per eliminare il vaiolo, eradicato ufficialmente nel 1980.

Ma finora gli scienziati non sono stati in grado di produrre questo tipo di vaccini sterilizzanti per patogeni complicati, come ad esempio la malaria e l’antrace. Per sconfiggere queste malattie, alcuni ricercatori hanno quindi sviluppato dei vaccini immunizzanti che prevengono le malattie senza effettivamente prevenire le infezioni: sono i cosiddetti vaccini “leaky”. E questi nuovi vaccini possono provocare un tipo di evoluzione microbica diversa e potenzialmente più spaventosa, di cui occorre tenere conto soprattutto nello scenario attuale dei molteplici vaccini anti-COVID già autorizzati o candidati (come detto, sono oltre 200 quelli in corso di sviluppo, e spesso molto diversi l’uno dall’altro per tecnologia usata).

La virulenza, come tratto di un patogeno, è direttamente correlata alla replicazione: più agenti patogeni ospita il corpo di una persona, e generalmente più malata diventa quella persona. Di conseguenza, la virulenza è definita come “la capacità di un agente patogeno di creare danni a un ospite”. Un alto tasso di replicazione fornisce però vantaggi evolutivi: più microbi nel corpo portano a più microbi nel moccio, nel sangue o nelle feci, il che offre ai microbi maggiori possibilità di infettare gli altri, ma ha anche dei costi, poiché può uccidere gli ospiti prima che abbiano la possibilità trasmettere la loro infezione.

Se un vaccino è completamente sterilizzante, il virus non può entrare nelle cellule, quindi non può evolvere perché non ha mai una possibilità di farlo. Ma se entra e si replica, c’è una pressione selettiva perché eviti gli anticorpi generati dal vaccino inefficiente. E in questa situazione non si sa mai quale sarà il risultato, che potrebbe trasmettersi in seguito ad altri contagiati. Il problema con i vaccini leaky è che consentono agli agenti patogeni di replicarsi senza controllo proteggendo allo stesso tempo gli ospiti da malattie e morte, eliminando così i costi associati all’aumento della virulenza.

Nel tempo, quindi, in un mondo di vaccinazioni fatte con vaccini leaky – come è quello in cui siamo entrati per prevenire il COVID-19 – l’agente patogeno potrebbe evolversi fino a diventare più mortale per gli ospiti non vaccinati, perché può raccogliere i benefici della virulenza senza, appunto, i costi, proprio come la malattia di Marek è diventata lentamente più letale per i polli non vaccinati [4]. E questa maggiore virulenza può anche far sì che il vaccino inizi a fallire, causando malattie negli ospiti vaccinati. Si tratta di due rischi molto importanti che dobbiamo potenzialmente aspettarci anche con i vaccini anti-COVID.

In un articolo del 2012 pubblicato su PLOS Biology [11], Andrew Read e Victoria Barclay hanno inoculato nei topi un vaccino anti-malaria leaky, usando questi topi infetti ma non malati per infettare altri topi vaccinati. Dopo che i parassiti sono circolati attraverso 21 cicli di topi vaccinati, Barclay e Read li hanno studiati e confrontati con quelli circolati attraverso 21 cicli di topi non vaccinati. Hanno così scoperto che i ceppi dei topi vaccinati erano diventati molto più virulenti, in quanto si erano replicati più velocemente e avevano ucciso più globuli rossi, rimanendo gli unici parassiti mortali alla fine dei 21 cicli di infezione.

Nel marzo 2017, Read e il suo collega David Kennedy della Penn State University hanno pubblicato, negli Atti della Royal Society B [9], un importante articolo scientifico in cui hanno delineato diverse strategie che gli sviluppatori di vaccini potrebbero utilizzare per garantire che i vaccini futuri non vengano puniti dalle forze evolutive. Una raccomandazione generale è che i vaccini dovrebbero indurre risposte immunitarie contro più bersagli. In una situazione del genere, diventa infatti molto più difficile per un agente patogeno accumulare tutti i cambiamenti necessari per sopravvivere.

Aiuta anche se i vaccini prendono di mira tutte le varianti o sottopopolazioni conosciute di un particolare patogeno, non solo quelle più comuni o pericolose. I vaccini dovrebbero pure impedire agli agenti patogeni di replicarsi e trasmettersi all’interno degli ospiti inoculati. Uno dei motivi per cui con i vaccini sterilizzanti la resistenza ai vaccini è meno problematica della resistenza agli antibiotici, è che essi vengono somministrati prima dell’infezione e limitano la replicazione, il che riduce al minimo le opportunità evolutive. Mentre questo non è vero, evidentemente, per i vaccini leaky. E se virus e batteri cambiano rapidamente in parte è proprio perché si replicano come matti all’interno dell’ospite.

Il materiale genetico di tutti i virus, infatti, è codificato in DNA o RNA; una caratteristica interessante dei virus a RNA è che cambiano molto più rapidamente dei virus a DNA. Ogni volta che fanno una copia dei loro geni commettono uno o pochi errori. Quando un virus a RNA si replica, il processo di copia genera un nuovo errore, o mutazione, per 10.000 nucleotidi, un tasso di mutazione fino a 100.000 volte maggiore di quello riscontrato nel DNA umano. Proprio come le persone – ad eccezione dei gemelli identici – hanno tutte genomi distintivi, le popolazioni di un virus tendono ad essere composte da una miriade di varianti genetiche, alcune delle quali se la cavano meglio di altre durante le battaglie con anticorpi addestrati al vaccino. I vincitori seminano la popolazione patogena del futuro.

I vaccini contro il SARS-CoV-2 sono sterilizzanti o vaccini “leaky”?

Il virus SARS-CoV-2 che produce il COVID-19 è un betacoronavirus, appartenente alla famiglia dei coronavirus (CoV), che comprende sia il virus della SARS che quello della MERS. Questi sono virus a RNA con genomi molto grandi, di circa 30 kb di lunghezza. La famiglia prende il nome dalla caratteristica “corona” di proteine, o ​​spike, che sporge dalla superficie del virus. L’accumulo di molteplici cambiamenti nella proteina spike ha portato, negli scorsi mesi, alla nascita di alcune varianti del SARS-CoV-2, come la variante inglese (nota come B.1.1.7), la variante sudafricana (nota come B.1.351) e la variante brasiliana (nota come B.11.28).

I primi vaccini contro l’attuale coronavirus (SARS-CoV-2) ad essere autorizzati si sono dimostrati variamente efficaci nel ridurre la malattia da COVID-19 nel ceppo originale, il Wuhan-Hu-1. Nonostante ciò, non sappiamo ancora se questi vaccini – e tantomeno, eventualmente, quali e in che misura – possano indurre l’immunità sterilizzante. Si prevede che i dati che affrontano queste fondamentali domande saranno presto disponibili dagli studi clinici sui vaccini in corso. Intanto sappiamo che la variante sudafricana (B.1.351) può sfuggire agli anticorpi nel sangue di persone precedentemente infette [27], il che evidenzia la prospettiva di una reinfezione con varianti antigenicamente distinte e può prefigurare una ridotta efficacia degli attuali vaccini basati sulla proteina spike. Ma anche se l’immunità sterilizzante – che, ripeto, con questi primi vaccini è tutta da dimostrare! – venisse indotta inizialmente, essa potrebbe comunque cambiare nel tempo con il diminuire delle risposte immunitarie e con l’evoluzione virale.

Per l’immunità sterilizzante occorre un particolare tipo di anticorpo noto come “anticorpo neutralizzante”. Questi anticorpi bloccano l’ingresso del virus nelle cellule e ne impediscono la replicazione. Il virus infettante dovrebbe essere identico al virus del vaccino per indurre l’anticorpo perfetto. Non a caso, molti vaccini virali tradizionali presentano l’intero virus in un forma viva attenuata (morbillo, parotite, rosolia, varicella, rotavirus, poliovirus orale Sabin, febbre gialla e alcuni vaccini antinfluenzali) o in una forma inattivata (polio virus Salk, epatite A, rabbia e altri vaccini antinfluenzali), portando a una risposta multipla, diretta non solo verso un’unica proteine virale, ma verso numerose proteine ​​virali contemporaneamente.

Questa molteplicità di risposte anticorpali, probabilmente, spiega perché per questi vaccini non sono stati documentati “ceppi di fuga” del virus dal vaccino. L’eccezione è rappresentata dal virus dell’influenza, in cui la cosiddetta “deriva virale antigenica” (ovvero le mutazioni che si accumulano nel tempo nelle due proteine ​​bersaglio) e lo spostamento o riassortimento antigenico (ricombinazione dei segmenti proteici che porta a una diversa combinazione nelle due proteine) significano che la risposta immunitaria a precedenti ceppi influenzali (o vaccini) non è più efficace nel prevenire l’infezione dai nuovi ceppi.

Tuttavia, la lunghezza della proteina spike usata dai vaccini autorizzati contro il SARS-CoV-2 è relativamente breve (circa 1270 aminoacidi) e un articolo in forma di preprint [12] ha indicato che la risposta anticorpale naturale alle infezioni (e presumibilmente anche a un vaccino basato sulla proteina spike) è concentrata in sole due sezioni della proteina. Dato che la risposta anticorpale alla proteina spike è così concentrata, occorre domandarsi, come hanno fatto T. Williams & W. Burgers su Lancet [13]: “potrebbero delle semplici mutazioni in queste sequenze limitate portare a un vaccino meno efficace, se la risposta immunitaria umana è così specifica a causa della sequenza ridotta usata dal vaccino?”.

I geni nel genoma di SARS-CoV-2 che contengono istruzioni per costruire parti del virus sono mostrati in colori diversi. Ad esempio, la sezione marrone nell’immagine contiene istruzioni genetiche per costruire la proteina “Spike”, che consente al virus di attaccarsi alle cellule umane durante l’infezione. Questa sezione del genoma funge da regione chiave per il monitoraggio delle mutazioni.

Ora, è vero che il SARS-CoV-2 non è un virus “segmentato” come quelli dell’influenza e che il suo tasso di mutazione risulta essere inferiore a quello di altri virus a RNA. Tuttavia, i risultati di un preprint del 2020 [14], esaminando il plasma convalescente per altri coronavirus umani – come il coronavirus umano 229E – suggeriscono che, come per l’influenza, le naturali mutazioni nell’uomo del coronavirus 229E con il tempo potrebbero rendere gli individui meno in grado di neutralizzare i nuovi ceppi. Dunque, qualcosa del genere potrebbe succedere anche per il SARS-CoV-2, e portare alla fine a un vaccino meno efficace.

Oggi è in uso un numero minore di vaccini virali ricombinanti, più simili nell’approccio a quelli recentemente concessi in licenza per il SARS-CoV-2. Essi sono fatti tramite l’ingegneria genetica: il gene che crea la proteina per il virus viene isolato e posizionato all’interno dei geni di un’altra cellula; quando quella cellula si riproduce, produce proteine vaccinali, il che significa che il sistema immunitario riconoscerà la proteina e proteggerà il corpo da essa. Uno di questi vaccini è quello per il virus dell’epatite B, che usa una delle proteine ​​dell’involucro virale, la superficie dell’antigene HBV. Gli anticorpi neutralizzanti sono mirati principalmente a una sequenza di 25 amminoacidi, dal 124 al 149. Ebbene, mutazioni puntiformi che provocano un’arginina rispetto al residuo di glicina nella posizione 145 in questa sequenza portano a un fallimento degli anticorpi neutralizzanti indotti dal vaccino e ad infezioni negli individui vaccinati [15].

I vaccini contro l’influenza, in genere, inducono protezione dalle malattie, ma non necessariamente protezione dalle infezioni. Ciò è in gran parte dovuto ai diversi ceppi di influenza che circolano, una situazione che può verificarsi anche con il SARS-CoV-2. Un fattore protettivo è il tasso di mutazione relativamente basso del SARS-CoV-2, ma l’infezione prolungata negli ospiti immunocompromessi potrebbe accelerare la mutazione, tant’è che nei pazienti affetti da HIV la resistenza agli antivirali si sviluppa rapidamente [9] (per tale ragione i pazienti con HIV non sono stati inclusi nei trial sui vaccini anti-COVID). Ed il fatto che esistano così tanti diversi vaccini anti-COVID in uso o in sperimentazione sulla popolazione facilita, con la pressione selettiva esercitata, il crearsi di “ceppi di fuga”.

Gli esperimenti con gli anticorpi monoclonali e lo sviluppo di una resistenza

Nei vaccini anti-COVID, queste mutazioni indesiderate potrebbero essere guidate da (1) deriva antigenica, o (2) per selezione, durante l’infezione naturale oppure a causa del vaccino stesso. Quando un virus viene coltivato sotto la pressione selettiva di un singolo anticorpo monoclonale che prende di mira un singolo epitopo (la piccola parte dell’antigene che lega l’anticorpo specifico) su una proteina virale, le mutazioni in quella sequenza proteica porteranno alla perdita di neutralizzazione, e alla generazione di “ceppi di fuga”. Questa sequenza di eventi è stata mostrata in laboratorio per la polio, il morbillo e il virus respiratorio sinciziale [16], e nel 2020 anche per il SARS-CoV-2 [17].

Un’altra scoperta importante è che il SARS-CoV-2, anche in presenza di anticorpi policlonali (nella forma dei sieri di convalescenti), può mutare e sfuggire alla neutralizzazione da parte degli anticorpi multipli del plasma di altre persone. Infatti, in una serie di esperimenti in vitro descritti in un preprint del 2020, il SARS-CoV-2 è stato coltivato in presenza di plasma neutralizzante di un convalescente [18]. Dopo alcuni passaggi seriali, erano state generate tre mutazioni nelle due sezioni-bersaglio della proteina spike che hanno permesso la formazione di una nuova variante del tutto resistente alla neutralizzazione del plasma. Quando questo virus è cresciuto in presenza di plasma convalescente di altri 20 pazienti, tutti i campioni hanno mostrato una riduzione dell’attività di neutralizzazione.

La sostituzione di amminoacidi osservata in questo esperimento si trova – guarda caso – nella stessa posizione delle mutazioni riportate in un preprint che descrive esperimenti di selezione di anticorpi monoclonali (con le varianti mutanti che sfuggono alla neutralizzazione di sieri umani convalescenti) [19] e di quella trovata nella famosa “variante sudafricana” del SARS-CoV-2 che si sta diffondendo rapidamente in Sud Africa e che ha mostrato di essere meno suscettibile alla neutralizzazione da parte di plasma convalescente di individui esposti alle precedenti varianti del coronavirus. E, sempre guarda caso, le varianti inglese, sudafricana e brasiliana sono emerse in Paesi dove erano in corso trial di vaccini anti-COVID.

In linea di principio, questi risultati suggeriscono che le varianti di SARS-CoV-2 potrebbe evolversi, in alcune persone, sviluppando una resistenza all’immunità indotta da vaccini ricombinanti diretti alla proteina spike (che sono basati sulla sequenza originale, la Wuhan-Hu-1). Ma solo gli studi clinici in corso mostreranno se gli individui vaccinati riconoscono le varianti SARS-CoV-2 in modo diverso, e se le mutazioni riducono la protezione del vaccino in alcuni individui vaccinati. La sperimentazione di fase 3 in corso di un vaccino a base di spike con vettore di adenovirus (Johnson & Johnson) in Sud Africa, dove la variante sudafricana sta sostituendo le varianti preesistenti, può fornire un’opportunità per esaminare questa domanda.

A causa dell’efficiente apparato di correzione di bozze del SARS-CoV-2, il tasso di sostituzione dei nucleotidi è più lento rispetto ad altri virus a RNA. Ciò ha portato alla speranza che l’antigene spike sarebbe rimasto stabile e che tutti i ceppi attualmente in circolazione sarebbero stati quindi suscettibili agli anticorpi neutralizzanti sviluppati in risposta ai primi vaccini. Uno studio di McCarthy et al. [20] riporta, tuttavia, che il coronavirus si sta adattando alla presenza di immunità – come segnalato da mutazioni di delezione ripetute in siti specifici della proteina spike – causando la rapida evoluzione della diversità antigenica, e soprattutto questa “mutazione di fuga” viene trasmessa anche ad altri individui. La spiegazione più ovvia è che questa delezione sia sorta in risposta a una forte e comune pressione selettiva.

In definitiva, la maggior parte dei vaccini anti-COVID addestrano il sistema immunitario a rilevare gli antigeni sulla superficie del SARS-CoV-2 e l’antigene più usato è la proteina spike, che viene vista come il bersaglio vaccinale più efficace. Quindi, ora che sta emergendo la prova che quelle particolari varianti sembrano influenzare l’efficacia del vaccino, dovrebbe essere necessario riformulare periodicamente i vaccini così che si adattino meglio ai ceppi circolanti. Per questa ragione, Moderna (e probabilmente anche altri produttori) stanno considerando due strategie “booster”, cioè di potenziamento dell’immunità nei vaccinati: (1) una terza dose dello stesso vaccino odierno; (2) in alternativa, una terza dose con un mRNA in cui sono state opportunamente incorporate le mutazioni della nuova variante sudafricana [21].

La struttura del virus SARS-CoV-2, con alcune importanti proteine superficiali e interne.

Le mutazioni nella proteina spike sono alla base delle principali varianti che destano preoccupazione. Dunque, i vaccini anti-COVID che prendono di mira questa proteina sul breve termine risolvono un problema ma dall’altro possono crearne di nuovi, soprattutto nel tempo e guardando quindi al futuro. Inoltre, anche i vaccini che usano due dosi potrebbero favorire la creazione di “ceppi mutanti di fuga”, dato che dopo la prima dose l’immunizzazione è solo parziale. Anche la lenta introduzione delle vaccinazioni in alcuni Paesi può dare il tempo al virus di mutare la sua proteina spike e sfuggire al vaccino (donde l’importanza di una politica globale di vaccinazione e della fornitura di vaccini ai Paesi che non possono permettersi di pagarli). Con il passare del tempo, alcuni vaccini potrebbero persino iniziare ad esacerbare le infezioni da COVID-19 attraverso un fenomeno noto come “potenziamento dipendente dall’anticorpo”, dove alcuni anticorpi si attaccano al virus in modo errato e finiscono per contribuire all’infezione [26].

Conclusione: verso un futuro davvero pieno di incognite

Sebbene l’immunità sterilizzante sia spesso l’obiettivo finale della progettazione del vaccino, raramente viene raggiunto. Fortunatamente, ciò non ha impedito in passato a molti vaccini diversi di ridurre sostanzialmente il numero di casi di infezioni da virus. Riducendo i livelli di malattia negli individui, si riduce anche la diffusione del virus attraverso le popolazioni. Pertanto, essa potrebbe essere stata un obiettivo troppo elevato per i produttori di vaccini COVID-19, ma secondo molti esperti potrebbe non essere necessaria per frenare la malattia e portare l’attuale pandemia sotto controllo [22].

Il caso del rotavirus, che causa vomito grave e diarrea acquosa ed è particolarmente pericoloso per neonati e bambini piccoli, è abbastanza semplice in questo senso. La vaccinazione limita, ma non ferma, la replicazione dell’agente patogeno. In quanto tale, non protegge da malattie lievi. Riducendo la carica virale di una persona infetta, tuttavia, diminuisce la trasmissione, fornendo una protezione indiretta sostanziale. Secondo i Centers for Disease Control (CDC) statunitensi, 10 anni dopo l’introduzione nel 2006 di un vaccino contro il rotavirus negli USA, il numero di positivi ai test per la malattia è sceso del 90% [22]. Quindi, anche con i vaccini anti-COVID si potrebbero avere nuovi infetti asintomatici o paucisintomatici.

Tuttavia gli imprevisti sono dietro l’angolo, come abbiamo visto essere successo con vaccini non sterilizzanti che prendevano di mira una sola o poche proteine virali. E quando, l’anno scorso, più di 1.000 scienziati del vaccino si sono riuniti a Washington D.C. (USA), al World Vaccine Congress, la questione dell’evoluzione indotta dal vaccino – incredibilmente – non è stata al centro di nessuna sessione scientifica. I ricercatori sono nervosi nel parlare e richiamare l’attenzione sui potenziali effetti evolutivi perché temono che, così facendo, potrebbero alimentare più paura e sfiducia nei confronti dei vaccini da parte del pubblico, anche se l’obiettivo è, ovviamente, garantire il successo del vaccino a lungo termine.

Al contrario, alcuni degli esperti di virus a cui non sfuggono i potenziali effetti evolutivi si sono espressi preoccupati del fatto che l’aggiunta di una “pressione evolutiva” all’agente patogeno mediante l’applicazione di quello che potrebbe non essere un vaccino completamente protettivo – come uno dei tanti vaccini sperimentali anti-COVID – possa alla fine peggiorare le cose. “Una protezione meno che completa potrebbe fornire una pressione selettiva che spinga il virus a eludere l’anticorpo presente, creando ceppi che poi eludono tutte le risposte ai vaccini”, secondo Ian Jones, professore di virologia presso la Reading University (UK). “In questo senso, un cattivo vaccino è peggio di nessun vaccino!” [23, 4]. Tuttavia, va sottolineato che al momento si tratta di un “peggior scenario” teorico, e che comunque – sia ben chiaro – non mette in discussione l’importanza della vaccinazione di massa.

Se quello appena illustrato è uno degli scenari peggiori, lo scenario migliore non lo è poi tanto di più, visto che, come ritiene Alexandre Le Vert, CEO e co-fondatore della casa di vaccini francese Osivax, “dovremmo aspettarci che più varianti appaiano periodicamente e molto probabilmente raggiungeremo una situazione simile all’influenza, dove più varianti circoleranno ogni stagione invernale” [26]. Dunque, si prospettano vaccinazioni a go-go per la popolazione e un business multi-miliardario per le case farmaceutiche. Un modo per aggirare la “corsa agli armamenti” del vaccino è lo sviluppo di un vaccino universale che sia a prova di futuro contro il coronavirus in evoluzione. Per capire come un tale vaccino potrebbe funzionare, un indizio chiave sta nell’esaminare – come abbiamo fatto in precedenza – i vaccini per altre infezioni virali che sono rimasti efficaci per decenni: stiamo parlando dei già citati vaccini sterilizzanti.

Poche aziende stanno sviluppando vaccini vivi attenuati per il COVID-19, anche se questi possono fornire una protezione molto forte: sono difficili da trasportare e potrebbero non essere sicuri per le persone con sistemi immunitari indeboliti. La maggior parte degli sviluppatori ha quindi optato per altri approcci, come vaccini inattivati (Sinovac, Novovax, etc.), vettori virali (Astrazeneca, Johnson & Johnson, Sputnik, etc.) e vaccini a mRNA (Pfizer, Moderna, CureVac, etc.). Nel caso del SARS-CoV-2, non ci sono ancora dati di efficacia dei vaccini inattivati in fase 3, ed i dati parziali apparsi sulla stampa mostrano al momento risultati controversi. Bisogna inoltre tener presente che la produzione dei vaccini inattivati richiede bioreattori per la crescita di virus vivo in alte condizioni di contenimento. Al contrario, i vaccini a mRNA e quelli a vettore virale sono fra i più semplici e veloci da realizzare.

Se i vaccini vivi attenuati sono fuori dal tavolo, come possono altri tipi di vaccini ottenere una protezione duratura? Emergex è uno dei numerosi sviluppatori di vaccini che si concentrano sui cosiddetti “linfociti T” – una parte fondamentale della nostra “memoria” immunitaria per infezioni future – e sugli antigeni interni del SARS-CoV-2. Come ha spiegato il suo CEO, Thomas Rademacher: “I nostri risultati suggeriscono che prendere di mira le proteine ​​di superficie, e in particolare la proteina spike, potrebbe non produrre una risposta immunitaria altrettanto sicura, efficace e di lunga durata rispetto a quella osservata con i vaccini vivi attenuati” [26]. Osivax sta usando un approccio simile, sviluppando un vaccino che consiste in nanoparticelle che trasportano copie di antigeni COVID-19 interni. Va detto, comunque, che anche per gli altri tipi di vaccini si è riscontrata la capacità di indurre la citata “risposta T”, come illustrato ad esempio, per il vaccino Pfizer, dal lavoro di Prendecki et al. [29].

Credo che al lettore risulterà a questo punto chiaro come la corsa ai vaccini sia in realtà soltanto all’inizio, mentre le nostre economie e il tessuto sociale sono sempre più provati. Pertanto, negli altri Paesi molti esperti si chiedono se saremo in grado di stare dietro – come progettazione e produzione dei vaccini, nonché accettazione degli stessi da parte della popolazione – alle ulteriori future varianti di SARS-CoV-2 che molto verosimilmente sorgeranno, indotte in molti casi dai vaccini medesimi [24]. In Italia questo dibattito non è mai partito, nonostante la conoscenza di questi temi e dei relativi risvolti dovrebbe essere portata anche all’attenzione della politica già in questa fase, non certo “a babbo morto”, al fine di prendere le decisioni migliori e di effettuare la pianificazione conseguente, uscendo dalla logica dell’inseguire gli eventi che ha guidato finora la gestione della pandemia nel nostro Paese.

In Italia, invece, i medici che in televisione informano il grande pubblico si limitano a ripetere il mantra “che un calo della velocità di trasmissione significa meno infezioni; una minore replicazione del virus porta a minori opportunità di evoluzione del virus negli esseri umani; e con meno possibilità di mutare, l’evoluzione del virus rallenta e c’è un minor rischio di nuove varianti”. Ma, come purtroppo abbiamo visto in dettaglio, se i vaccini anti-COVID utilizzati nei trial o approvati sono “leaky” – o se anche solo alcuni di essi lo sono – pure una vaccinazione di massa degli italiani / europei lascerebbe al virus ampie opportunità di creare nuovi “ceppi di fuga” (da noi o nei Paesi poveri) e, qualora questi ultimi eludessero i vaccini da noi usati, ciò rischierebbe di farci tornare, da un momento all’altro, quasi alla casella di partenza.

Proprio per tutte queste ragioni è – a mio modesto parere – importante, per la politica sanitaria anti-COVID, non solo riflettere con molta più obiettività e lungimiranza su tutta la faccenda, ma soprattutto implementare contemporaneamente un “piano B” che sia del tutto svincolato dai vaccini e mirato a risolvere il problema (saturazione delle terapie intensive e dei reparti di cure a bassa intensità degli ospedali) alla radice, ovvero facendo in modo che meno persone ricorrano all’ospedale, grazie: (1) alla prevenzione tramite opportune campagne di informazione che invitino almeno la popolazione più a rischio a compensare i bassi livelli di vitamina D (questione chiave già illustrata in un mio articolo [25]), e comunque non per ridurre il rischio di infezione bensì la gravità della stessa; e (2) alla cura ai primi sintomi attraverso un serio ed efficace protocollo di cura domiciliare, oggi di fatto assente.

Desidero ringraziare, per la lettura critica del manoscritto e gli utili suggerimenti forniti, il dr. Piergiuseppe De Berardinis (direttore del Laboratorio di immunologia presso l’Istituto di Biochimica e Biologia Cellulare del CNR), che in questi anni si è occupato di studiare la risposta immunitaria e la problematica dei vaccini sia dal punto di vista sperimentale che divulgativo. Naturalmente, la responsabilità di eventuali inesattezze o errori residui è solo ed esclusivamente dell’Autore.

 

Riferimenti bibliografici

[1] Thomas L., “SARS-CoV-2 spike deletion mutations may evade current vaccine candidates, study finds”, News Medical Life Sciences, 23 novembre 2020.

[2] Menichella M., “Mondi futuri. Viaggio fra i possibili scenari”, SciBooks Edizioni, Pisa, 2005.

[3] Ewald P.W., “Evolution of Infectious Disease”, Oxford University Press, New York, 1994.

[4] Boots M., “The Need for Evolutionarily Rational Disease Interventions: Vaccination Can Select for Higher Virulence”, PLoS Biology, 2015.

[5] No author listed,Pertussis vaccination: use of acellular pertussis vaccines among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP)”, CDC Recommendations and Reports, 1997.

[6] Van Gent M., “Studies on Prn Variation in the Mouse Model and Comparison with Epidemiological Data”, PLoS ONE, 2011.

[7] Lam C., Lan R. et al., “Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia”, Emerging Infectious Diseases, 2014.

[8] Carman W.F. et al., “Vaccine-induced escape mutant of hepatitis B virus”, The Lancet, 1990.

[9] Kennedy D.A., Read A.F., “Why does drug resistance readily evolve but vaccine resistance does not?”, Royal Society Acta B, 2017.

[10] Read A.F., “Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens”, PLoS Biology, 2015.

[11] Barclay V.C. et al., “The Evolutionary Consequences of Blood-Stage Vaccination on the Rodent Malaria Plasmodium chabaudi”, PLoS Biology, 2012.

[12] Greaney A.J., “Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies”, preprint, BioRxiv, 2021.

[13] Williams T.C., Burgers W.A., “SARS-CoV-2 evolution and vaccines: cause for concern?”, Lancet Respir. Med., 29 gennaio 2021.

[14] Eguia R.D. et al., “A human coronavirus evolves antigenically to escape antibody immunity”, preprint, BioRxiv, 18 dicembre 2020.

[15] Romanò L. et al., “Hepatitis B vaccination”, Human Vaccines & Immunotherapeutics, 2015.

[16] Mas V. et al., “Antigenic and sequence variability of the human respiratory syncytial virus F glycoprotein compared to related viruses in a comprehensive dataset”, Vaccine, 2018.

[17] Weisblum Y., “Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants”, eLife, 2020.

[18] Andreano E. et al., “SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma”, preprint, bioRxiv, 2020.

[19] Liu Z. et al., “Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization”, bioRxiv, 2021.

[20] McCarthy K.R. et al., “Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape”, preprint, BioRxiv, 19 gennaio 2021.

[21] Kupferschmidt K., “Vaccine 2.0: Moderna and other companies plan tweaks that would protect against new coronavirus mutations”, Science, 26 gennaio 2021.

[22] McKenna S., “Vaccines Need Not Completely Stop COVID Transmission to Curb the Pandemic”, Scientific American, 18 gennaio 2021.

[23] Kelland K., “Russia vaccine roll-out plan prompts virus mutation worries”, Reuters, 21 agosto 2020.

[24] Kuhn R., “Coronavirus variants, viral mutation and COVID-19 vaccines: The science you need to understand”, The Conversation, 2 febbraio 2021.

[25] Menichella M., “Vitamina D e minore mortalità per COVID-19: le evidenze e il suo uso per prevenzione e cura, Fondazione David Hume, 23 febbraio 2021.

[26] Smith J., “Can Covid-19 Vaccines Keep up with an Evolving Virus?”, Labiotech, 11 febbraio 2021.

[27] Wang P. et al., “Increased Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7 to Antibody Neutralization”, preprint, bioRxiv, 26 gennaio 2021.

[28] Ewald, P.W., “Evolution of virulence”, Infectious Disease Clinics of North America, 2004.

[29] Prendecki et al., “Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine”, The Lancet, 25 febbraio 2021.

 

 




Combating new viral outbreaks in the 21st century

The explosive emergence of Zika in the past two years was a sobering reminder that relatively obscure viruses can arise suddenly as global health emergencies. In the Flaviviridae alone, the family of viruses that Zika belongs to, there are more than 20 viruses with the potential to cause disease in humans. Unfortunately, there is no yet a satisfactory way to predict and stop the next epidemic, so we will likely remain susceptible to new emergent infections. The best-known antidote against viral spread is vaccination, but the road to the designing, testing, and implementing effective vaccines is notoriously protracted. In fact, it could be decades before we have a Zika vaccine licensed for use; a rather delayed response to an outbreak that started in 2014. How can we quickly respond to new viral challenges then? Fortunately, it may be possible to shorten the future development of preventative therapies with promising new technologies to block infections. Our research group–in fact, an expanding community of researchers–has devoted a lot of effort to find molecules that could bridge this development gap, and the field is now enthused with the potential of special proteins called ‘monoclonal antibodies’.

The body usually responds to infections by creating several diverse antibodies that can bind specifically to the invading microbes and stop pathogen replication. Inducing these protective antibody responses has been the goal of vaccine research for almost every microbial disease. The recent, not so quiet revolution in the field, is that we can now isolate individual clones of cells producing antibodies. Each clone has the recipe to produce a single antibody, and copying these recipes–hence the name ‘monoclonal’– allows us to recreate the molecules that compose the overall response to a given pathogen. In more practical terms, it is now possible, for example, to obtain blood from a few individuals that had Zika infections and isolate monoclonal antibodies that can block the Zika virus. The hope is that, in an event of a new outbreak, these molecules can be ready to be administered early to populations at risk and limit the spread.

We have tested the concept of using monoclonal antibodies instead of traditional vaccines; the results were recently published in the journal Science Translational Medicine. We engineered three monoclonal antibodies against Zika virus based on sequences from a Zika patient. Administration of a cocktail with these antibodies completely prevented macaques from becoming infected with Zika virus. Thus, our results strongly suggest that passive immunization with a monoclonal antibody cocktail with might be also effective in humans.

For the foreseeable future, the prevention and treatment of emerging infectious diseases will continue to be of major international significance. Monoclonal antibodies are a recent and promising tool for our playbook against microbial diseases. These are exciting times, while we are vulnerable to emerging infectious pathogens, the combination of technologies for early pathogen detection, and early development of experimental therapies might lead to complete novel manners to stop epidemics–Hopefully, before they even become epidemics.

https://www.nature.com/nature/journal/v546/n7658/full/nature22400.html
a, Weekly counts of confirmed travel-associated and locally acquired ZIKV cases in 2016. b, Four counties reported locally acquired ZIKV cases in 2016: Miami-Dade (241), Broward (5), Palm Beach (8), and Pinellas (1). There was also one case of unknown origin. c, The locations of mosquito traps and collected A. aegypti mosquitoes found to contain ZIKV RNA (ZIKV+) in relation to the transmission zones within Miami. d, Temporal distribution of weekly ZIKV cases (left y-axis), sequenced cases (bottom), and A. aegypti abundance per trap night (right y-axis) associated with the three described transmission zones. ZIKV cases and sequences are plotted in relation to symptom onset dates (n = 18). Sequenced cases without onset dates or that occurred outside the transmission zones are not shown (n = 10). Human cases and A. aegypti abundance per week were positively correlated (Spearman r = 0.61, Extended Data Fig. 1b). The maps were generated using open source basemaps (http://www.esri.com/data/basemaps).