
The Figuration of Space

Andrea Ricolfi

Les mathématiciens n’étudient pas des objets,
mais des relations entre les objets;

il leur est donc indifférent de remplacer ces objets
par d’autres, pourvu que les relations ne changent pas.

La matière ne leur importe pas, la forme seule les intéresse.

— H. Poincaré, La Science et l’Hypothèse (1901)



This note was written during Spring 2014 as an essai due for a
Ph. D. course held at the University of Stavanger, named Philosophy
of Science and Ethics.
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1 Introduction

The goal of this note is to introduce and describe the problem,
arising in Mathematics and Physics, of the figuration of space. The
word “space” can have many different meanings in Mathematics.
Nevertheless, we will only cope with its geometric interpretation. In
other words, we will focus primarily on the question:

Q. What is a geometric space, and how can we get to know it?

The present note is not intended to give a satisfactory answer
to the above question: after all, Q is nothing but a rephrasing of
the (obviously ambitious) question: “What is Geometry all about?”.
What we would like to do is just to give a flavor of how mathemat-
ical ideas have changed in nature during the past century, leading
to a new amazing concept of a space.

1.1 The main argument

The key idea of our argument is as follows. Suppose we are in a
Supermarket, and we suddenly realize that the goal of our life is to
understand boxes of oranges. We have one such box right in front
of us: let us call it X, say. We wish to understand X as deeply (read:
geometrically) as possible; we stare at X intensely. We cannot help
noticing that a box of oranges consists of a certain collection of...
oranges.

But here is the main point: if we just focus on the oranges,
as we are tempted to do, we miss the actual geometry: how is X
stacked with respect to other boxes? is it in balance? is it straight
or slopping? is it on the boundary of a shelf? how are the oranges
stacked with respect to one another? Unfortunately, we do lose all
this information when we just look at the oranges. Thus, here is
the first lesson Geometry teaches us: if X is now a space, and the
oranges are the points in X,

L1. We cannot restrict ourselves to describing the points of X.

Furthermore, understanding the particular X ”directly” is not
the main goal one should have in mind. Indeed,

• X might be difficult to study; and

• the ”essence” of X might be shared by other spaces, close to
X in a suitable sense; by sake of cheapness, a geometer cannot
help identifying all such spaces.

The ideal strategy is to try and relate all X’s instead of staring
at a particular one: we are not interested in X in itself, but rather in
the properties that make X essentially what it is. Thus, the second
lesson we learn from Geometry is:

L2. Looking at the single object X is not the correct stategy.
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These two lessons will come up again later, as explaining them
in detail is one of the goals of this note.

Two words on the verb to identify. When we say we identify
two objects under a certain relation, we mean something quite deep.
But, hopefully, the following silly comparison may clarify the point:
let A be a group of people in a hall; we can define the relation ”hav-
ing the same hair color” on the set A. Denote by ∼ this relation, so
that for two elements (human beings) x, y ∈ A, we will have x ∼ y
if and only if x and y have the same hair color. We can of course
partition A into smaller groups according to hair color; for instance,
for any blonde y, say, we can define the equivalence class of y to be

[y] = { x ∈ A | x ∼ y } = { x ∈ A | x is blonde } ⊂ A.

The set of equivalence classes is called the quotient of A under ∼,
and is denoted by

A/∼ = { [y] | y ∈ A } .

One has to think of it as ”A, up to ∼”. The main point is that, in any
equivalence class, any two people give rise to the same class (hence
are identified in A/∼): well, maybe in A we have Bob 6= Jessica, but
all that matters to us was hair color: hence [Bob] = [Jessica], as soon
as they have the same hair color. In other words, x ∼ y if and only
if [x] = [y] as elements in A/∼.

To identify similar boxes, we need to look at all of them and
to find out the similarities. For instance, we may happen to notice
that some boxes contain the same number of oranges: this is one
common feature that we certainly cannot ignore. There might be
important, more refined (geometric!) properties that our particular
X shares with different boxes. And we want to capture them all!

But a question naturally arises from the above: if on the one
hand it is easy to check hair color, how can we check that two ap-
parently unrelated geometric objects are in fact quite similar to one
another? How can we compare them?

We need a way to relate them to one another, and we have to
make sure that, while we do this, the structure is preserved (i.e. that
we do not end up by comparing X with a confection of butter). This
will be accomplished by the fundamental notion of a morphism,1

which is the main character of this whole work: a morphism is a
transformation between... boxes of oranges (in this case), with the
property that the very essence of a box (what makes it a box of
oranges, instead of a confection of frozen cod) stays preserved: all
that matters is the preservation of the structure, by moving from a
box (or space) to another.

1 From ancient greek µoρϕη, ης: shape.
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1.2 Guided by the Structure

Let us forget about oranges, which were just a comparison. Sup-
pose we have a space, whatever it is: call it X. It is the kind of object
we are interested in. It does have points, but looking at points only
would mean studying a set, which is the most static object one can
think of (as it will be clearer in the next section). Instead, what
makes a “geometry” is exactly the contrary:

Geometry ←→ motion, relations, interactions!

The modern viewpoint is that in order to understand a space, it is
useless to look at its (motionless!) points only; it is rather meaning-
ful to look at how this space interacts with, or deforms to similar (=
with the same structure) spaces. In other words, we will develop
the following guiding principle:

P . We understand a certain class of mathematical objects once we
understand the interrelations between such objects.

The principle P is the mathematical incarnation of the Philo-
sophical tendency called Structuralism. Interrelations between ob-
jects, as we shall see, are governed by morphisms, and morphisms
belong to the fascinating world of Category Theory. We will use cat-
egorical language throughout, and this explains the presence of the
next section.

Motivations from Physics. We will apply P to Geometry. But
before that, it is convenient to illustrate its power with a bunch of
physical examples. First, suppose we have a system of particles,
say of gas particles. What do we know about this system when it
is at rest? Nothing. If we want to capture any relevant information
about it, e.g. its mass or some other invariant of it, we have to let
the particles interact: they have to be free of running around and
possibly collide. When we write the equations of motion, say, we
can extract some relevant information. But in order to write them
down, we do need motion!

As a second example, consider the recent development of parti-
cle accelerators (note the word accelerator!): this may shed light on
the importance of looking at how the interesting objects (particles)
move and interact, in order to get closer to their comprehension.

As a last example, consider String Theory: the fundamental par-
ticles are strings, which are one-dimensional objects, propagating in
a ”stringy” space of dimension 6. Motion again! and, most im-
portant, the objects of interest do not even have the dimension of a
point (zero): they are curves!

Rules of the game. We will see in the next section how Struc-
turalism materializes in the algebraic theory of categories: what is
important, when studying objects of a given type, is not the single
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object in itself; rather, its shape, the structure of its very essential
skeleton, and how such a structure stays preserved.

This concept of “preserving the structure” is essential, and has
its own place in the main datum of a category: the arrows, also
called the morphisms. The unique rule for moving from a space to
another one through one such morphism is hidden in the (greek
root of the) word itself:

the unique rule is: to preserve the structure, the shape.

1.3 This note in a few lines

To face Q in a suitable way, we have remarked (Poincaré re-
marked, actually) that the unavoidable notion attached to a geom-
etry is that of interrelations between similar (yet possibly different)
spaces. In fact, two issues leave us tremendously disappointed,
when trying to understand a geometric space X:

1. its points, which make X into just a set, and lead us to forget
the geometry;

2. the space X itself. Indeed, the geometry of X is better un-
derstood in terms of the geometry of other spaces which are
related to X (by some suitable morphism).

The goal of what follows is to glance the modern algebro-geometric
machinery which makes us much less disappointed about these is-
sues.

2 The structure of mathematical entities
The introduction of the cipher 0 or the group concept was

general nonsense too, and mathematics was more or less stagnating
for thousands of years because nobody was around to take such childish steps...

— A. Grothendieck, writing to Ronald Brown.

Summary.

In this section we provisorily forget about our aim: spaces and
their geometry. We just focus on the main tool we will use, namely
Category Theory.

The whole theory of categories is probably the most evident in-
carnation of the Structuralism tendency in Mathematics, more pre-
cisely in that field of Pure Mathematics which goes under the name
of Abstract Algebra.

Categories constitute a crucial tool in several fields of Mathe-
matics. Not only they provide a neat and elegant language, and
powerful theorems which can be applied in a wide variety of situa-
tions, but also they form an interesting, yet quite abstract research
field in themselves.
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Aside 2.1. Category Theory is known, among mathematicians, as Abstract Nonsense (which
explains the epigraph of this section), a mean but somehow affectionate nickname. After all,
the adjective is quite appropriate: what is more abstract than focusing on the relationships
between mathematical entities, instead of those entities themselves? For the reader’s amuse-
ment, we would like to include here part of the last-second page of the book Reports of the
Midwest Category Seminar IV (Springer-Verlag, 1970). It is a hilarious ”Final Examination” in
Category Theory: two pages of the most clever irony, after more than one hundred pages
of advanced Mathematics. As a note for the reader, the ”true founder of Category Theory”
according to this page is... Lewis Carroll, the king of poetical nonsense.

This section is needed because morphisms are needed through-
out, and the notion of a morphism lives in the categorical setting.
This whole note, as hopefully will be clear at the end, is itself about
morphisms.

Remember that we wish to somehow avoid coping with mere
sets. Amazingly, any set is itself a category. That may sound con-
tradictory, as we just (roughly) proposed a slogan like

Categories good, sets bad!

But this is actually a great example to understand why we wish to
avoid mere sets: it will be clear soon that a set is the worst category
one can think of. Indeed, if the core of a category is the class of
its morphisms, then a set, viewed as a category, has no morphisms
other than the identities (which are forced to be there by the cat-
egory axioms)! This translates in an elegant way the staticity of
sets.

2.1 (Mathematical) Structuralism

Structuralism is a vast paradigm which crosses many fields. As
far as we know, the essence of this tendency is the following: suit-
ably defined interrelations between the objects of interest (depend-
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ing on the field) are the only possible clue towards understanding
those objects.

The author is now trying to briefly present a couple of examples
of structuralist thought in a more general context than the field
of Mathematics. We hope the experienced reader will forgive the
author’s sloppiness and incompetence.

It does make sense to date back the origins of Structuralism in
the field of (modern) Linguistic, initiated by the Swiss Ferdinand
de Saussure and his school, in the early twentieth-century. The
foundations of Saussure’s thought can be found in [6]. His idea of
language (langage, in french) is that of a structured system, different
from mere speech. It is constituted by mutually defining entities,
rather than absolute ones. The basic units of langage are, for Saus-
sure, the linguistic signs, which one can think of as links between
what he calls the signifier and the signified. The latter is abstract
in nature: it is a mental creation depending on what the signifier
intended. . . to signify. What is of interest to us is that the correct
”objects of study”, in order to understand langage, were exactly
these linguistic signs: the links. Not the signifier or the signified
in themselves, but rather what joins them to one another. How-
ever, langage for Saussure was something more sophisticated than
a mere list of names linked somehow to things. This is not what
is meant by a linguistic sign. The following diagram may illustrate
his viewpoint:

concept acoustic image.
linguistic sign

The name of a concept naturally produces (→) an acoustic image (a
mental representation of that concept: the signified), and conversely
an acoustic image is what allows a speaker (←) to pronounce the
name attached to that image; that name is the signifier. Why is all
this important to us? Our main objects of study will be links as
well, in our sense: we will call such links arrows, or morphisms.

Two (human) milestones in the development of Structuralism
are for sure the American Noam Chomsky and the Belgian Claude
Lévi-Strauss.

In his book Syntactic Structures (cf. [1]), Chomsky insisted, among
other things, on grammar’s independence of meaning. Syntax is
the structure he focuses on: interrelations between words matter, to
the extent that they go beyond their meaning. Whence the famous
nonsensical, yet grammatically correct, sentence in his book:

“Colorless green ideas sleep furiously”.

It is by no means a coincidence that the above sentence is (an exam-
ple of) what is called a category mistake.

In his book The Elementary Structures of Kinship (cf. [4]), Lévi-
Strauss explores the structure of families: not only the relationships
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between members of the same family, but also interrelations be-
tween different families. His monography originated from an expe-
dition in Brasil, with the aim of studying Nambikwara indians. The
founding principle of any society, observed Lévi-Strauss, seemed
to be incest ban. Why? The reasons given by anthropologists so
far were not fully satisfactory, and this motivated his work. Lévi-
Strauss observed that it is in regard of respecting this principle that
different communities (often more than just two at a time) agreed
on organizing weddings between women and men from different
groups. This procedure clearly breaks blood relationships, orig-
inating ”alliance” relationships instead, which better could guar-
antee the observance of the incest ban principle. Once more: the
interrelations are the actual character, not the single members of a
community, or the single community.

Recap. If we wish to understand social phenomena, like the
language of a population, or the creation of a society, we need to
look at the very structure of the problem. And this structure con-
sists of interrelations between basic entities: words, people, groups
of people. Furthermore:

(i) What sort of interrelations we are talking about depends on
the context: syntax, or the act exchanging wemen and orga-
nizing weddings.

(ii) What these relationships are supposed to preserve also de-
pends on the context: correct grammar, or the incest ban.

In Mathematics. The appearance of Structuralism in Mathe-
matics can be described, in very simple terms, as follows. Intu-
itionism claimed that a mathematical object deserving this name
is something that possesses a certain explicit ”construction”: one
cannot speak about something without being able to produce a tan-
gible example. There are mathematical proofs which are construc-
tive, and mathematical proofs which are not. Both types are now
officially accepted to be able to prove existence of some mathemati-
cal entity. It was not so under Intuitionism. Of course, proofs are
proofs, but the abstract existence of an object used to be highly disre-
garded. However, the light of Structuralism finally started brighting
the mathematical sky: it was no longer possible to hide the presence
of abstract structures, permeating several major fields of Mathemat-
ics at the same time. The ubiquity and recurrence of certain struc-
tures made it natural to look for a global picture of Mathematics, so
to encompass all relevant objects at the same time: mathematicians
started looking at the class of all sets, of all groups, of all vector
spaces. . . In other words, mathematical entities were divided into
”classes” (not sets: Russell lies in wait for us!), according to the
very structure of the underlying objects.2 The study of how the

2 The term class is a technical one. The reader can think of a class as the
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same structure can appear in different objects is the notion of a
morphism between objects in the same class. Category Theory was
born.

2.2 Categories in a nutshell

A friendly introduction to Category Theory, which is not aimed
at mathematicians only, is the book [7], which to our knowledge
is not available in a paper cover form (yet). Categories were intro-
duced in [2] in the 1940’s. Exactly in the same period, the notation

f : X → Y

was introduced to denote a function f from a set X to a set Y. To
quote the reference where we learnt this fact: in [5], the author says:

The fundamental idea of representing a function by an
arrow first appeared in topology about 1940, probably in pa-
pers or lectures by W. Hurewicz on relative homotopy groups.
(cf. [3].) His initiative immediately attracted the attention of
R. H. Fox and N. E. Steenrod, whose [8] paper used arrows
and (implicitly) functors [. . . ]. The arrow f : X → Y rapidly
displaced the occasional notation f (X) ⊂ Y for a function. It
expressed well a central interest of topology. Thus a notation
(the arrow) led to a concept (category).

This seems just a notational issue, but it really is a milestone
(”fundamental idea”) in the change of perspective that animated
the subsequent decades.

Morally, or romantically, one might also date back the invention
of categories to the French mathematician and philosopher of Sci-
ence Henri Poincaré. The epigraph of this note is taken from his
work ”Science and Hypothesis” (1901), and will serve us as a “slo-
gan” not only for this section but for the rest of this work. Thus it
seems adequate to give the English translation of his words, before
starting out with the theory of categories:

Mathematicians do not study objects, but the relations
between objects; to them it is a matter of indifference

if these objects are replaced by others,
provided that the relations do not change.

Matter does not engage their attention,
they are interested in form alone.

blowing-up of a set: something in some sense too big to still be a set. Classes
are important in some foundational aspects of Mathematics, e.g. Gödel-Bernays-
Von Neumann (BNG) Set Theory, especially when one wants to avoid Russell’s
Paradox (as we do). Classes are used to define categories. Just to give a flavor of
how classes generalize sets, and bypass Russell: one of the basic axioms in BNG
says that a class is a set if and only if it belongs to another class.



Giving the precise definition of a category goes beyond the
scope of this note. We cannot avoid, however, mentioning its main
features. We collect them in the following (incomplete) list:

• Nearly any class of interesting objects in Mathematics form a
category.

• A category C consists of two main data: a class Ob C of ob-
jects and a class morC of arrows (or morphisms). Objects will
be denoted X, Y, Z . . . Arrows relating the objects will be de-
noted a : X → Y, b : Y → Z, . . .

• For each couple of objects X, Y, there is a (possibly empty) set,
called a hom-set, consisting of arrows between the two objects
(in a fixed direction):

homC (X, Y) = { arrows X → Y } ⊂ morC .

Each hom-set is a set, but the collection morC of all arrows is
in general a proper class.

• For every X ∈ Ob C , one hom-set is never empty: homC (X, X)
always contains at least an arrow 1X : X → X, called the iden-
tity arrow of X.

• Morphisms can be ”composed” (in an associative way) with
one another:

X a−→ Y b−→ Z

has to make sense as a morphism, denoted b ◦ a, from the
object X to the object Z.

• There is a particular kind of arrows which we will be most
interested in: isomorphisms. We say that an arrow f : X → Y is
an isomorphism when there exists another arrow g : Y → X
such that g ◦ f = 1X and f ◦ g = 1Y. Necessarily g, called the
inverse of f , is an isomorphism too.

• The key idea of a category, which is the reason why we are
focusing on them for our purpose, is that objects do not really
matter: what is important, in understanding the class Ob C , is
how objects interact:

arrows (morC ) is all that matters!

Examples.

1. A category C with two distinct but isomorphic objects. It can
be represented as follows.

∗ ?1∗

f

1?

f−1
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Note how abstract this category can be: no-one told you that ∗
or ? have the structure of a set, for instance. In particular they
may have no ”elements”, and the arrows in such a category
are not necessarily functions.

2. We will denote by Ens the category whose objects are sets,
and whose morphisms are functions between sets: just ordi-
nary maps.

3. From Algebra: the category of groups, Abelian groups, rings,
monoids, fields, vector spaces...

4. From Geometry: the category of topological spaces, Lie groups,
differentiable manifolds, complex manifolds, schemes, affine
schemes...

Remark 2.1. It is important to notice that two objects X, Y ∈ Ob C
in a category C could be isomorphic in C but not isomorphic in
other categories (where they still appear as objects there, of course).
For example, any two sets with 4 elements are isomorphic as sets;
but, on the other hand, there are two non-isomorphic groups of
order 4, and in the category of groups, no-one will ever be allowed
to think of them as ”more or less the same group”. They cannot be
identified.

2.3 Sets are rigid

It is well known that a set is characterized by its elements. Re-
call the lesson L1 which we learned from Geometry: never restrict
yourself to look uniquely at points in a space X (i.e. elements in the
underlying set of points of X).

The goal of this subsection is to illustrate the staticity of sets
using the language of categories.

It can be proved that a set, i.e. an object

A ∈ Ob Ens,

is the same thing as a category where the objects are the elements
in A, and the arrows are just the identity arrows: one for each
object. This is really saying that a set is the most static object we can
think of: when viewed as a category, it only has the bare minimum
amount of arrows that the axioms of a category require: the identity
arrows. A set of n elements

A = { x1, x2, . . . , xn }
could hence be represented as follows, as a category:

x1 • x2 • . . . xn •1x1 1x2 1xn

This means that there are no morphisms from an object (element)
to another:

homA(xi, xj) =

{
∅, if i 6= j
{ 1xi } , if i = j.
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2.4 Categories defeat Russell

This subsection is about Russell’s paradox. We want to recall it
to the reader in order to underline the limitations of sets, opposed
to the strength of categories. Moreover, we will use it as a pretext
to introduce the notion of a functor, or morphism of categories.

Russell’s Paradox. The set S = {y | y is a set} is a paradoxical
object.

Proof. If such a set S existed, we could consider the subset

S ′ = {y ∈ S | y is not a member of itself} ⊂ S .

If S ′ is a member itself, then by definition it is not a member of
itself, and conversely.

On the other hand,

The category of categories makes perfect sense.

Why is that? Let us try to define the category Cat of all cat-
egories. Firstly, in such an immense category, an object is an or-
dinary category. This is pretty fine, but what is an arrow in this
category? What is a morphism of categories?

Digression about functors. Although Category Theory itself
belongs to the Field of Abstract Algebra, it is so powerful that its
techniques carry over many other fields in Mathematics. We also
mentioned that nearly anything which interests mathematicians can
be made into a category. One can also move from a category to
another, using the notion of a functor, which can be thought of as a
morphism of categories. A functor F : C → D takes objects X ∈ Ob C
to objects FX ∈ Ob D , arrows f : X → Y in C to arrows F f : FX →
FY in D , and the category axioms (in other words, the category
structure) stays preserved under these assignments. It would be
grotesque if we tried to explain (in non-technical words) what a
functor is, better than it is explained in [7], thus we limit ourselves
to quote a few lines from the Introduction of that excellent book:

These categories can then be connected together by func-
tors. And the sense in which these functors provide powerful
communication of ideas is that facts and theorems proven in
one category can be transferred through a connecting functor
to yield proofs of analogous theorems in another category. A
functor is like a conductor of mathematical truth.

To sum up, Cat is a category because functors exist. And noth-
ing like Russell’s paradox will ever affect the granite structure of
categories.

Recall that one of the appearences of Structuralism is in Linguis-
tics (N. Chomsky). This lead us to make the following:
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Unimportant but funny comparison. A functor between two
categories can be thought of as translation between two languages.
What can be formulated in the source language can be translated
in the target language, and the process of doing so preserves the
structure, meaning that a sensible sentence gets sent to a sensible
sentence. Of course, some information can be lost in the process,
like for instance when one translates poetry: the perfect balance of
metric, and the admirable rhymes constructed by Dante will never
be recovered in any other language. Not even an echo of them.
Something of this sort happens for instance when one starts with
a concrete category C , i.e. one where the objects are sets. Then, by
definition there is a functor

F : C −→ Ens

to the category of sets, called a forgetful functor: it is the functor
which ”forgets” (literally!) the additional structure present in the
objects of C . It intentionally destroys all the information which was
present in C .

There is, however, an important point which breaks the compar-
ison between functors and translations: no translation can be fully
satisfactory, but some functors can. The example of poetry was just
an extreme one. Actually, it is likely that one will never find two
languages where the correspondences between words (the objects)
and sentences (words linked together: the morphisms) make the
two languages ”isomorphic”. It may very well happen that, after
translating a word, translating it back in the source language does
not produce the word one started with only. There is also another
issue: languages carry a heavy structure, due to the meaning that
each word has. And there will always be a word which has more
than one meaning in one language, but only one in the other. Like-
wise, there will always be a sentence, perhaps a way of saying,
which is meaningful in a language but (e.g. for historical reasons)
has no counterpart in the other language. Instead, unlike for trans-
lations, some functors are isomorphisms of categories: they make the
two categories essentially the same.

3 Space = Points + Geometry

Summary.

This section is really (trying to be) about Geometry. The goal is
now to illustrate, in its full power, the appearance of mathematical
Structuralism in the geometric setting. More precisely, we wish to
use ideas from Topology in order to convince the reader that

only arrows matter.

And in particular, for geometric purposes, it is of extreme impor-
tance to focus on isomorphisms, and to able to identify isomorphic
objects.
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To phrase it again differently: the goal of this section is to ex-
plain why every mathematician should consider a cup and a donut
as the same thing.

3.1 Topology: the Geometry of rubber

The fundamental object in Topology is called a topological space.
It is a set, whose elements are called points, but the points, as we
already know, do not really matter. For instance, it may very well
happen that the same set can be endowed with different topological
structures, whatever that means. Well, if points do not determine
the topology, what does? The answer is: open sets. To give a topol-
ogy on a set X means to give a certain collection of subsets of X,
satisfying some very natural axioms. We do not dig into the details
of what these axioms say. The point is that the open sets tell us
many things about X, since they define the topology! Notice that
each open subset U of X is itself a topological space, and comes
with a natural inclusion U → X, which is a morphism in the cate-
gory of topological spaces.

How to think about these open sets? Take this example: I can
declare the open sets to be all the singletons { x }, where x is any
point in X. This I can really do: it is called the discrete topology on
X. One cannot make smaller open sets. But then studying X as a
topological space is nothing but studying X as a set, and this is not
interesting, as we already motivated.

Let us think as follows: just for explanation purposes, let us
figure out X as a sheet of paper, with its structure being hidden
in the very details of the paper; one figures the stressed topologist
trying to understand X from above. . . but his eyes are not strong
enough, and his glasses do not help. Then he uses the only tool
he has available: the open sets! these can be thought of as a col-
lection of magnifying lenses spread out all over the paper. Some
are powerful, some are less, and the way they intersect gives local
information about the points in the intersection.

Remark 3.1. To have lenses ”of null radius” amounts to have no
lenses at all. But these lenses are the only tool to understand X.
Hence, in the discrete topology, there is nothing to understand!

Figure 1: The magnifying lenses, alias the open sets.

16



It goes without saying that topological spaces form a category.
The arrows between topological spaces are the continuous functions,
i.e. those arrows f : X → Y such that f−1(U) is open in X for every
open subset U of Y.

Definition 3.1 (Homeomorphism). An isomorphism in this category
is a bijective continuous map whose (set-theoretic) inverse is also
continuous. Such maps are called homeomorphisms. They can also be
characterized as bijective continuous maps sending opens to opens.

We will give two examples of homeomorphisms. The idea of a
homeomorphism f : X → Y between two spaces X and Y is that we
can continuously deform X into Y. This is the reason why Topology
is often called

The Geometry of rubber.

Homeomorphic objets tend to share many many properties, so from
a geometric point of view it is perfectly legitimate to (mentally)
identify such objects. This way, we are reduced to study a smaller
class of objects: the homeomorphism classes arising from all possible
identifications (remind the example of hair color: exactly the same
principle). The following is an example of what kind of nontrivial
property can be preserved under homeomorphisms.

Example 3.1. This is an example of a famous theorem, one of the
favorites by the author. The Hairy ball theorem states that there can-
not exist a continuous nowhere vanishing vector field on the sphere.
This, intuitively, means that if you try to comb a sphere, you can do
it of course, but you cannot avoid creating at least a cowlick some-
where. The continuous vector field is the configuration of hair on the
sphere, and the cowlick is the point on the sphere where the chosen
vector field (coiffure) has to vanish. This has also a meteorological
interpretation: if now the sphere is the Earth, and the vector field
is the wind of a hurricane, then the theorem is saying that there
must be a point on Earth where the speed of the wind id 0. This
is sometimes called the eye of the cyclone. The amazing fact about
this theorem, and the reason why we stated it, is that it does not
hold for spheres only, but for any topological space which is home-
omorphic to a sphere. This should shed light on the importance of
considering homeomorphism classes.

To conclude, homeomorphisms are to be considered, as they
carry important and nontrivial invariants. Knowing this can be a
tool to decide whether or not two spaces X, Y are homeomorphic.
Indeed, suppose you have calculated, for both X and Y, a certain in-
variant. If they are the same, then X and Y might be homeomorphic.
But if they are not, then certainly X and Y cannot be homeomor-
phic. For example, on a torus (later called a ”donut”), there exist
continuous nowhere vanishing vector fields. Hence, by the Hairy
Ball Theorem, a donut cannot be homeomorphic to a sphere.
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Figure 2: The eye of the cyclone.

Figure 3: The torus is not homeomorphic to the sphere.

3.2 What is the Earth with the North Pole removed?

In this subsection, we build an example of a morphism between
topological spaces. It will be easy to represent it with a picture,
and it will be extremely clear that such morphism is in fact an iso-
morphism in the category of topological spaces. It is known as the
Stereographic Projection.

Everything happens in the topological space

R3 = { (a, b, c) | a, b, c ∈ R } ,

consisting of triples of real numbers. It is the usual Euclidean 3-
space. In R3, we look at the following 2-dimensional subsets: the
plane z = 0, which can be represented as

P = { (a, b, 0) | a, b ∈ R } ⊂ R3,

and the shpere

S2 = { (x, y, z) ∈ R3 | x2 + y2 + (z− 1)2 = 1 } ⊂ R3

of radius 1, centered at the point (0, 0, 1). On the sphere there is the
point N = (0, 0, 2), which we call the North Pole. As shown in the
picture below, we can build a function

F : S2 \ {N } → P

sending a point p ∈ S2 on the sphere to a precise point F(p) ∈ P
in the plane: the one obtained by intersecting the plane with the
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Figure 4: The Stereographic Projection F : S2 \ {N } → P .

unique line joininig N and p. For instance, the origin in the plane
will be the image of the South Pole (the origin itself, in the picture).

Of course, this map is not defined at N: it is indeterminate,
because there are infinitely many lines ”joining N to itself”.3

It is also clear that the map F does not respect the lenghts: a
small ball centered at a point on the sphere can become a huge
open disc in the plane (take such a ball close to the North Pole, to
figure what happens).

Continous maps are allowed to strecht and bend (but not cut!)
the rubber they are deforming. This is not a problem. All they are
required is to do so in a continuous manner. The map F, even though
it does not respect lengths, is bijective, continuous and sends open
sets to open sets, hence it is a homeomorphism. To sum up, and to
answer the question in the title of this subsection: from a topologi-
cal perspective, the Earth with the North Pole removed is the same
thing as a plane.

3.3 Donuts and cups

This very short subsection is quite recreational, as a serious ex-
ample of a homeomorphism has been given in the previous subsec-
tion. We will now make sense of the joke of which topologists have
been the (legitimate) victims since a long time ago: they are indeed
laughed at because they are unable to4 distinguish between a donut

3 This indeterminacy can be ”resolved” by passing to the projective closure of
the plane, i.e. by adding the so called ”line at infinity”, a one-dimensional object
whose points capture all the lines through N, among which we were unable to
choose inside R3.

4 And they have to be unable!
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and a cup. The reason is that there a homeomorphism between
these two geometrical spaces, meaning that one is able to deform
continuously one into the other, and this deformation is bijective
and respects the open sets. One really has to think as these spaces
as being made of rubber! Here is a picture of the deformation:

Figure 5: Cup ∼= donut.

4 The power of arrows

Summary.

The two parts of this section will try to cope with the lessons L1
and L2, respectively, we ”learnt” in the Introduction. We will talk
(inappropriately, i.e. giving no definition at all) about the modern
algebro-geometric notion of a space, a structure going under the
name of a scheme.

In order to fix L1, we will give the example of the (affine)
scheme X = Spec Z: we will be able to represent any of its points
by means of a genuine morphism. This will enable us to get rid of
the ”static” intuition we used to have about points.

In order to fix L2, we will encounter Yoneda’s Lemma, a deep
theorem in Category Theory. We will adapt it to our situation,
where it will tell us that the mere datum of a scheme X is equivalent
to specifying all morphisms Y → X, where Y is any other scheme.
This is exactly what we announced earlier when dealing with this
(structuralist) issue: a space is best understood in terms of the mor-
phisms relating it to other spaces.

4.1 The dynamic nature of points

This subsection addresses lesson L1 and solves (up to the reader’s
faith in the presented example) the problem of the staticity of points.

We will explain ”the dynamic nature of points” by means of an
extended example, which generalizes widely.

The goal is to convince the reader that in suitable spaces, called
schemes, which are locally modelled on affine schemes (see below),

a point is a morphism.

Let us get started now.
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Rings and their ideals. Let Z be the ring of integers: as a set,
it is just

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

But a ring is more than just a set: the ring structure remembers the
two usual operations (+, ·) defined on the integers.

Every prime number p ∈ Z generates, under multiplication by
any other integer, what is called a prime ideal in Z. It is denoted

(p) = { pn | n ∈ Z } ⊂ Z.

In rigorous terms, one can make the following:

Definition 4.1. A prime ideal in a ring R is any additive subgroup
I ⊂ R such that IR ⊂ I (so far we have defined ideal) and whenever
a product xy lies in I, at least one between x and y lies in I itself.

Note that (p) = (−p), so the sign is not an issue. However, there
is a prime ideal which is not generated by a prime: the (0) ideal,
consisting of the unique number 0. The zero ideal (0) is prime
because in Z the product cancellation law holds: if a product of
integers is 0, one of the factors was already 0. Hence (0) ⊂ Z is
prime by Definition 4.1.

Let us give a name to the set of prime ideals in Z. We call it the
spectrum of the ring of integers:

Spec Z = {Prime ideals in Z } = { I ⊂ Z | I is a prime ideal } .

This is not just a set: first of all it is a topological space. Recall that
we encountered topological spaces earlier: the sphere, the plane,
the sphere minus the North Pole, the donut. . . We will not spend
time to talk about the particular topology5 that we have on Spec Z,
because much more important structure is present. (We will not talk
about this structure, either, but the goal of this discussion is to see
its effects.) In other words, we are dealing with a more sophisticated
(and complicated) object than the donut, the cup, appeared in the
previous section. Any scheme carries a natural algebro-geometric
structure: it is a space (geometry!) encoding a huge amount of
arithmetic (algebra!) data.

The space Spec Z is one of the building blocks of the modern
notion of space: Spec Z is an example of what is called an affine
scheme.6 Any scheme, locally in its topology, looks like an affine
scheme, and every affine scheme is by definition the spectrum of a
ring. We now wish to convince the reader that such ”points” are
not static at all: they are morphisms themselves, as it will be made
clear by this simplified example.

5 This is called the Zariski topology.
6 Scheme Theory was introduced by Alexander Grothendieck in the 1950’s. It

goes without saying that affine schemes form a category.
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To explain the dynamic nature of points, we will use the instance
of Spec Z, which we now rename X.

Background material.

§ I. The field Fp of integers modulo p.

Remind the example of the relation ”having the same hair color”.
Now we do the same with the relation, to be imposed on the inte-
gers Z, ”having the same remainder in the division by p”. In other
words, we consider equivalent two integers n and n′ when n− n′ is
a multiple of p. We call such n and n′ equivalent modulo p. Of course,
the possible remainders in the division by p are 0, 1, . . . , p− 1. This
says there are p equivalence classes of integers modulo p, namely

[i] = { n ∈ Z | n− i is a multiple of p } ⊂ Z,

for 0 ≤ i ≤ p− 1. These form a set

Fp = { [0], [1], [2], . . . , [p− 1] } ,

which is not only a set,7 but it is a (finite) field, i.e. a commutative
and unitary ring in which every nonzero element is invertible. It is
the unique field, up to isomorphism, containing exactly p elements,
and it can be constructed as a quotient of Z, as indicated above
(dividing out Z by the overquoted relation). Thus, once more, each
[i] ∈ Fp should not be considered as the integer i, but as ”i, up to
any multiple of p”: [i] is a ”representative” of all those integers that
you can write as i + tp, for some t ∈ Z.

Example 4.1. If p = 5, then n = 12 and n′ = 27 are equivalent
modulo p, meaning that n − n′ = −15 is a multiple of p. Both n
and n′ can thus be denoted by the symbol [2] when viewed inside
F5:

12 mod 5 = 27 mod 5 = [2] ∈ F5.

Thus each Fp is a quotient of Z, i.e. a set of equivalence classes
for a relation8 on Z.

§ II. The field Q of rational numbers.

There is another field we can get starting from Z: the field Q

of rational numbers. Its elements are ordinary fractions, i.e. actual
numbers of the form a/b, where a, b ∈ Z and b 6= 0. The procedure
which gives us Q out of Z is ”inverting” every nonzero integer.
This is clear! In more algebraic terms, Q is the localization of Z at the
ideal (0).

7 Notice how many times we are forced to use the expression ”. . . is not only a
set”.

8 One should be more careful and talk about an equivalence relation, the only
kind of relation which allows to ”take quotients”.
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We are almost there. We need one more definition: for every
point x ∈ X = Spec Z, define

κ(x) =

{
Fp if x = (p),
Q if x = (0).

Claim. To give a point
x ∈ X

is the same as to give a morphism of rings

φx : Z→ κ(x).

Proof. Let x ∈ X be a point. Let us try to produce a morphism
Z → κ(x). First of all, a point x ∈ X is a prime ideal I ⊂ Z, so it
is either of the form (p) for a prime p ∈ Z, or it is the zero ideal
(0) ⊂ Z. Now, we said that each Fp = κ(p) is a quotient of Z: this
means there is a canonical (surjective) ring homomorphism

πp : Z→ Fp = κ(p)
i 7→ [i] = i mod p.

On the other hand, Q = κ(0) is a localization of Z, and as such it
has a canonical (injective) ring homomorphism

j : Z→ Q = κ(0)
n 7→ n/1.

Conversely, there is exactly one ring homomorphism from Z to
each of the fields k(x).9 Thus it has to be the one just defined, for
each x ∈ X. Summing up, the correspondence is

x ←→ φx =

{
πp if x = (p),
j if x = (0).

This finishes the proof.

More Generally. . .

As we said at the beginning of this subsection, the instance we
described generalizes widely. Indeed, to give a point in an affine
scheme Y = Spec R, i.e. to give a prime ideal p ⊂ R, always boils
down to giving a morphism R→ κ(p), where κ(p) is a field canon-
ically attached to the point p ∈ Y.

What happens in general is that, given two rings R, S, we have
the following bijection between hom-sets:

homRing(R, S) ∼= homAfS(Spec S, Spec R). (1)

9 This is a general fact: any ring R is a Z-algebra in precisely one way, i.e. Z is
the initial object in the category of rings.
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We have denoted by Ring the category of rings, and by AfS the
category of affine schemes.

If we look at our example of X = Spec Z once more, we find

homRing(Z, k(x)) ∼= homAfS(Spec κ(x), Spec Z).

In the left hom-set, there is just one element (as there exists exactly
one ring homomorphism from Z to any other ring). The element

Spec κ(x)→ Spec Z

corresponding to it in the right hom-set is the (inclusion morphism
of the) point x ∈ X.

Finally, observe the interaction between Algebra and Geometry:
the left hom-set in (1) is algebraic (rings are algebraic objects), while
the right hom-set is geometric (spectra are geometric spaces).

4.2 Yoneda’s Lemma

This subsection addresses lesson L2 in the Introduction. The
goal is now to illustrate Yoneda’s Lemma, whose content can be
summarized as follows: in a category C , an object X is identified
by the functor hX : C → Ens defined on objects by:

T 7→ hX(T) = homC (T, X).

In other words, any objects is completely described by the arrows in
C pointing at it.

Let us fix a category C . Recall that homC (X, Y) is a set for every
two objects X, Y ∈ Ob C . We now build a new category, which we
denote by

hom(C , Ens),

defined as follows: the objects are the functors C → Ens from C to
the category of sets Ens. A morphism between two functors (with
the same source and target category) is called, in general, a natural
transformation. For sake of completeness, we now give the precise
definition.

Definition 4.2. Let F, G : A ⇒ B be functors. A natural trans-
formation η : F ⇒ G between F and G is the datum of a subclass
of arrows in B,

{ ηA : FA→ GA }A∈Ob A ⊂ morB ,

which is indexed by Ob A and has the following property: for
every arrow f : A→ B in A , there is a commutative diagram

FA GA

FB GB.

ηA

F f G f
ηB
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Now we have two categories:

C , and hom(C , Ens).

The second one might seem a bit strange, but it does have genuine
objects and morphisms, as we just saw. It is often called a functor
category. Now we define a functor between these two categories: we
let

F : C → hom(C , Ens)

be the functor which takes an object X ∈ Ob C to the functor hX ∈
Ob hom(C , Ens) in the target category, defined previously. This is
a perfectly nice functor. How is it defined on arrows? Well, the
image F f of an arrow f : X → Y in C is by definition the following
natural transformation (arrow in hom(C , Ens)): the image of f ,

F f : hX ⇒ hY

is defined by the datum

{ (F f )T : hX(T)→ hY(T) }T∈C ⊂ morEns,

where the arrow (F f )T is nothing but composition by f in C :

(F f )T : homC (T, X)→ homC (T, Y)
φ 7→ f ◦ φ.

We are ready to state:

Lemma 4.1 (Yoneda’s Lemma). The functor F is an embedding of
categories.

This just means what it looks like: we can regard the source
category C as a subcategory of the functor category hom(C , Ens).
And we do this via the functor F, i.e. by assigning to any object X
the functor FX = hX. In particular, Yoneda’s Lemma is saying that,
for any two objects X, Y ∈ Ob C , there is a bijection

homC (X, Y) ∼−→ homhom(C ,Ens)(hX, hY).

Clearly, this map is given by the one we just described, namely
f 7→ F f .

Back to our situation. We are interested in algebro-geometric
categories. For instance, if we take as C the category Sch of all
schemes, what Yoneda’s Lemma says is the following:

• A scheme X determines the functor hX : Sch → Ens sending
a scheme T to the set

hX(T) = homSch(T, X).
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• Conversely, a functor of the form hX completely reconstructs
X. This is because the functor which we denoted by F, acting
by

X 7→ hX,

is ”injective” (the correct word is faithful): roughly speaking,
every object hX ∈ Ob hom(Sch, Ens) comes from a unique
scheme X ∈ Sch.

The functor hX is usually called the functor of points of X. Indeed,
a morphism T → X is, by definition, a T-valued point of the scheme
X.
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